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PREFACE

These are the lecture notes prepared for a course on C∗-algebras given by the author

at IMSC, Chennai during Sept 2019-March 2020. The targeted audience were graduate

students interested in working in the area of operator algebras. The aim of this course

was to make the audience familiar with few basic notions in the theory of C∗-algebras

and make them familiar with the language required to read the current literature on

the subject. The topics discussed in this notes (we merely scratch the surface as the

motivation is to make the reader converse in the language as opposed to giving a complete

treatment) are universal C∗-algebras, group C∗-algebras, crossed products, Hilbert C∗-

modules, Morita equivalence, and K-theory.

The prospective reader of these notes is assumed to have acquaintance with the

following topics in C∗-algebras.

(1) Gelfand-Naimark theorem for commutative C∗-algebras,

(2) continuous functional calculus,

(3) the notion of positivity, states and the GNS construction,

(4) the quotient construction in C∗-algebras, and

(5) the existence of approximate identities in C∗-algebras.

Arveson’s “Invitation to C∗-algebras” is an ideal and a highly recommended book to

learn the above mentioned topics. The organisation of this notes is as follows.

In the first few sections, we discuss a few examples of C∗-algebras. The first example

we discuss is the algebra of compact operators and realise them as a universal C∗-

algebra given in terms of generators and relations. This serves as a model for the notion
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of universal C∗-algebras. The universal C∗-algebras allows us to quickly define group

C∗-algebras and crossed products, two classes of examples extensively studied in the

literature. Several important C∗-algebras studied in the literature has this universal

prescription so it is appropriate to give a rigorous treatment. A little glimpse to the

world of semigroup C∗-algebras is provided with a treatment of the Toeplitz algebra.

After quickly reviewing the measure theoretic preliminaries in Section 4, we discuss in

Section 5 group C∗-algebras associated to a locally compact second countable Hausdorff

group.

In Section 6, we take up crossed products of C∗-algebras. After defining the full

and reduced crossed product, we introduce Hilbert C∗-modules in Section 7 as a tool to

prove that the reduced C∗-norm is independent of the choice of the representation that

one chooses. The author believes that it is an appropriate point to introduce the notion

of Hilbert C∗-modules to the reader. As an application of the machinery of crossed

products, Stone-von Neumann theorem regarding the uniqueness of irreducible Weyl

representations is proved in Section 8. After a short discussion on the non-commutative

torus, we discuss Rieffel’s proof of Mackey’s imprimitivity theorem in Section 10. The

notion of Morita equivalence is introduced and a proof is provided in the discrete setting.

Sections 11-16 in itself constitute a short course on K-theory. After deriving the basic

properties of K0 and K1, the chapter culminates with the proof of Bott periodicity due to

Cuntz. The treatment on K-theory, and also on universal C∗-algebras is based on three

lectures given by Cuntz during the Oberwolfach conference on semigroup C∗-algebras

held in Oct 2014. It also borrows material from the Master’s thesis of Prakash Kumar

Singh, a former student of CMI, Chennai , done under the author’s supervision.

There are several excellent resources to read about the material covered in this notes.

The bibliography contains a sample list. It is certainly not exhaustive and I apologise

sincerely for any omission. The author claims no originality for the material presented

nor for the way it is presented.

I would to like end this short introduction by thanking a few people who have helped

me immensely so far. First, I would like to thank V. S. Sunder and my advisor Partha

Sarathi Chakraborty for teaching me several aspects of mathematics which has enriched

my understanding of the subject. I thank Arup, Bipul and Prakash for several discus-

sions on K-theory. I thank Anbu and Murugan for discussions regarding the uniqueness

of Weyl relations. Last but not least, I thank the participants of this course Sruthy,

Piyasa and Jayakumar for attending all the lectures and their enthusiasm shown which

kept me going for the entire length.
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1 The C∗-algebra of compact operators

The first C∗-algebra of interest is the algebra of compact operators on a separable Hilbert

space. We assume throughout that all the Hilbert spaces that we consider are separable.

Our convention is that the inner product is linear in the first variable and antilinear in

the second variable. Let us recall the following facts usually learnt in a first course on

functional analysis. Let H be a separable Hilbert space.

(1) A bounded linear operator T : H → H is said to be compact if the following

condition is satisfied. Suppose (xn) is a bounded sequence in H. Then (Txn) has

a convergent subsequence in H.

(2) Denote the set of compact operators on H by K(H). Then K(H) is a norm closed

two sided ideal in B(H). Moreover K(H) is closed under taking adjoints.

(3) An operator T : H → H is said to be finite rank if Ran(T ) is finite dimensional.

Denote the set of finite rank operators on H by F(H). Then F(H) is dense in

K(H).

For ξ, η ∈ H, let θξ,η ∈ B(H) be defined by θξ,η(γ) = ξ〈γ|η〉. Clearly, θξ,η is of rank

one and hence compact. Note the following relations.

θ∗ξ,η = θη,ξ

θξ1,η1θξ2,η2 = 〈ξ2|η1〉θξ1,η2
Tθξ,η = θTξ,η

θξ,ηT = θξ,T ∗η

for ξ, η, ξ1, ξ2, η1, η2 ∈ H and T ∈ B(H). The above relations imply that the linear span

of {θξ,η : ξ, η ∈ H} is a ∗-closed subalgebra of K(H).

Exercise 1.1 Prove that the linear span of {θξ,η : ξ, η ∈ H} is F(H).

Observe that the map H×H 3 (ξ, η)→ θξ,η ∈ K(H) is linear in the first variable and

antilinear in the second variable. Note that for ξ, η ∈ H, ||θξ,η|| = ||ξ||||η||. These two

facts and the fact that F(H) is dense in K(H) together imply that if D is a countable

dense subset of H, then {θξ,η : ξ, η ∈ D} is total in K(H). Thus K(H) is a separable

C∗-subalgebra of B(H).

The two most important results regarding the C∗-algebra of compacts is that K(H) is

simple, i.e. it has no nontrivial two sided ideals and that K(H) has only one irreducible

representation up to unitary equivalence.
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Theorem 1.1 Let H be a separable Hilbert space. Then K(H) is simple.

First we prove the result assuming H is finite dimensional. Suppose dim(H) = n. Then

every linear operator on H is compact and consequently K(H) is isomorphic to Mn(C).

Lemma 1.2 For n ≥ 1, Mn(C) is simple.

Proof. Let n ≥ 1 be given. For i, j ∈ {1, 2, · · · , n}, let eij be the matrix with 1 at

the (i, j)th-entry and zero everywhere. Then {eij}i,j forms a basis for Mn(C). Note the

following relations.

eijekl = δjkeil

e∗ij = eji.

for i, j, k, l ∈ {1, 2, · · · , n}. Let I be a non-zero two sided ideal in Mn(C). Pick a non-

zero element X ∈ I. Write X =
∑

i,j xijeij. There exists k, l such that xkl 6= 0. Note

that ekkXell = xklekl. Hence ekl ∈ I as I is a two sided ideal. Let i, j ∈ {1, 2, · · · , n} be

given. Note that eij = eikeklelj. Hence eij ∈ I for every i, j. But {eij}i,j is a basis for

Mn(C). As a consequence, it follows that I = Mn(C). This completes the proof. 2

Lemma 1.3 Let A be a C∗-algebra. The following are equivalent.

(1) For every non-zero representation π, ||π(a)|| = ||a||.

(2) The C∗-algebra A is simple.

Proof. Suppose (1) holds. Let I be a non-zero ideal in A. Let π : A/I → B(Hπ) be a

faithful representation of A/I. Denote the quotient map A→ A/I by q. Then for every

a ∈ A, ||π◦q(a)|| = ||a||. In other words, ||a|| = ||a+I|| for every a ∈ A. Pick a non-zero

element x ∈ I. Then the previous equality implies that ||x|| = ||x + I|| = 0 which is a

contradiction. This proves (1) =⇒ (2).

Suppose (2) holds. Let π be a non-zero representation of A. Then ker(π) = {0}.
Hence π is injective. But any injective ∗-homomorphism is isometric. Thus ||π(a)|| = ||a||
for every a ∈ A. Thus (2) =⇒ (1) is proved. Hence the proof. 2

Fix an orthonormal basis {ξ1, ξ2, · · · } for H. For i, j, let Eij = θξi,ξj . Observe the

following.

EijEkl = δjkEil (1.1)

E∗ij = Eji (1.2)
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for i, j, k, l ∈ N. Let An be the linear span of {Eij : i, j ∈ {1, 2, · · · , n}}. The above

relations imply that An is a ∗-subalgebra of K(H). Since An is finite dimensional, it

follows that An is norm closed. Moreover the map eij → Eij from Mn(C) → An is an

isometric ∗-isomorphism (Why?). Thus An is simple. Observe that An ⊂ An+1 and

A :=
⋃
n≥1An is norm dense in K(H) (Why?).

Proof of Theorem 1.1. Let π : K(H) → B(H0) be a non-zero representation. Since

A is dense in K(H), it follows that there exists n0 such that π is non-zero on An0 . Since

An0 ⊂ An for n ≥ n0, it follows that π restricted to An is non-zero. But An is simple.

Consequently π is isometric on An for n ≥ n0. Since A =
⋃
n≥n0
An, it follows that

||π(a)|| = ||a|| for every a ∈ A. Since A is dense in K(H), it follows that ||π(a)|| = ||a||
for every a ∈ K(H). Hence K(H) is simple. This completes the proof. 2

Next we derive a “universal picture” of K(H). Keep the foregoing notation.

Proposition 1.4 Let A be a C∗-algebra. Suppose there exists a system of matrix units

{eij : i, j ∈ N} in A, i.e. the set {eij : i, j ∈ N} satisfies the following relations.

eijekl = δjkeil

e∗ij = eji

for i, j, k, l ∈ N. Then there exists a unique ∗-homomorphim π : K(H) → A such that

for i, j ∈ N, π(Eij) = eij.

Proof. Note that {Eij : i, j ∈ {1, 2, · · · , n}} is a basis for An for every n. Thus there

exists a linear map πn : An → A such that πn(Eij) = eij for i, j ∈ {1, 2, · · · , n}. Clearly

πn is a ∗-homomorphism. Since An is simple, it follows that πn is isometric. The maps

(πn)’s are consistent, i.e. πn+1|An = πn. Thus there exists a ∗-homomorphism π : A → A

such that π|An = πn. Since each πn is isometric, it follows that π is isometric. Thus,

π extends to a ∗-homomorphism to the closure of A which is K(H). We denote the

extension again by π. It is clear that π is the required map. Uniqueness of π is obvious.

2

Derive the following “coordinate free” description of the universal picture of K(H).

Exercise 1.2 Let D be a dense subspace of H and A be a C∗-algebra. Suppose that for

ξ, η ∈ D, there exists eξ,η ∈ A such that

e∗ξ,η = eη,ξ

eξ1,η1eξ2,η2 = 〈ξ2|η1〉eξ1,η2

for ξ, ξ1, ξ2, η, η1, η2 ∈ D. Show that there exists a unique ∗-homomorphism π : K(H)→
A such that π(θξ,η) = eξ,η for ξ, η ∈ D.
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Next, we study the representation theory of the algebra of compact operators. The

crucial facts regarding the representation theory of compacts are the following:

(1) Any non-degenerate representation of K(H) is a direct sum of irreducible represen-

tations.

(2) The only irreducible representation, up to unitary equivalence, of K(H) is the

identity representation.

This is the content of the next theorem.

Exercise 1.3 Keep the foregoing notation. Let En =
∑n

i=1Eii. Note that En is the

projection onto the subspace spanned by {ξ1, ξ2, · · · , ξn}. Hence En ≤ En+1 for n ≥ 1.

Show the following.

(1) The sequence (En)→ 1 strongly, i.e. Enξ → ξ for every ξ ∈ H.

(2) For every finite rank operator T on H, TEn → T and EnT → T in norm.

(3) For every compact operator T on H, TEn → T and EnT → T in norm. In other

words, (En) is an approximate identity of K(H).

Lemma 1.5 The identity representation of K(H) on H is irreducible.

Proof. Let W be a non-zero closed subspace of H which is invariant under K(H). Pick

a unit vector η ∈ W . Note that θξ,η(η) = ξ. Thus ξ ∈ W for every ξ ∈ H. This implies

that W = H. Hence the proof. 2

Theorem 1.6 Let π : K(H) → B(H̃) be a non-degenerate representation. Then there

exists a Hilbert space H0 and a unitary U : H⊗H0 → B(H̃) such that

π(A) = U(A⊗ 1)U∗

for A ∈ K(H).

Proof. Set En :=
∑n

i=1Eii. Note that En is an approximate identity of K(H). Since

π is non-degenerate, it follows that π(En) → 1 strongly. Thus there exists i such that

π(Eii) 6= 0. Choose such an i. We claim that π(Ejj) 6= 0 for every j. Note that π(Eij) is

a partial isometry with initial space π(Ejj) and final space π(Eii) 6= 0. Hence π(Ejj) 6= 0.

This proves our claim.
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Let H0 be the range space of π(E11). Denote the dimension of H0 by d and let {ηi}di=1

be an orthonormal basis for H0. We claim that {π(Ei1)ηj}i,j is total in H̃. Denote the

closed linear span of {π(Ei1)ηj}i,j by H1. It is clear that π(Ers) leaves H1 invariant for

every r, s. Since the linear span of {Ers} is norm dense in K(H), it follows that H1 is

invariant under π and so is H⊥1 .

Suppose H⊥1 6= {0}. By definition, it follows that H0 ⊂ H1. Hence H⊥1 ⊂ H⊥0 =

Ker(π(E11)). Thus π(E11) = 0 on H⊥1 . But π(Ei1) is a partial isometry with final space

π(Eii) and initial space π(E11) = 0 on H⊥1 . Consequently, π(Eii) = 0 on H⊥1 for every i

which contradicts the fact that π(En)→ 1 strongly. This proves our claim.

Let r, s ∈ N and j, k ∈ {1, 2, · · · , d} be given. Calculate as follows to observe that

〈π(Er1)ηj|π(Es1)ηk〉 = 〈π(E1s)π(Er1)ηj|ηk〉
= δrs〈π(E11)ηj|ηk〉
= δrs〈ηj|ηk〉
= δrsδjk.

The above calculation together with the fact that {π(Ei1)ηj}i,j is total in H̃ ensures

that there exists a unitary U : H ⊗H0 → H̃ such that U(ξi ⊗ ηj) = π(Ei1)ηj. A direct

calculation reveals that U(Ers⊗1)U∗ = π(Ers). The proof is now completed by appealing

to the fact that linear span of {Eij : i, j} is dense in K(H). 2

Exercise 1.4 Let π : K(H)→ B(H̃) be a non-degenerate representation. Suppose there

exists a Hilbert space H0 and a unitary U : H⊗H0 → H̃ such that

π(A) = U(A⊗ 1)U∗

for A ∈ K(H). Show that dim(H0) is the dimension of the range space of π(p) where p

is any rank one projection. The dimension of H0 is called the the multiplicity of the

identity representation in π.

We usually identify all infinite dimensional separable Hilbert space and reserve the

letter K to indicate the C∗-algebra of compact operators on a separable infinite dimen-

sional Hilbert space.
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2 Universal C∗-algebras

Often, a C∗-algebra is prescribed in terms of generators and relations. We have already

seen one example of this phenomenon. The C∗-algebra K is the universal C∗-algebra

generated by a system of “matrix units” {eij : i, j ∈ N}. We make this idea precise here.

This is based on the lectures given by Cuntz in 2014 at Oberwolfach.

Let A be a ∗-algebra. Let p : A → [0,∞) be a map. We say that p is a C∗-seminorm

if

(1) p is seminorm on A,

(2) for x ∈ A, p(x∗x) = p(x)2, and

(3) for x, y ∈ A, p(xy) ≤ p(x)p(y).

For x ∈ A, define ||x|| := sup{p(x) : p is a C∗-seminorm on A}. It is quite possible that

||x|| is infinite for some x ∈ A. Suppose assume that ||x|| <∞ for every x ∈ A. Let

I := {x ∈ A : ||x|| = 0}.

Condition (3) implies that I is an ideal in A. Consider the quotient A/I. The semi-norm

|| || descends to a C∗-norm on A/I. The completion of A/I with respect to this C∗-norm

is called the universal C∗-algebra of A or the enveloping C∗-algebra of A usually denoted

C∗(A).

Exercise 2.1 Keep the foregoing notation. Show that for every x ∈ A,

||x|| = sup{||π(x)|| : π is a ∗-homomorphism from A to a C∗-algebra}.

||x|| = sup{||π(x)|| : π is a non-degenerate representation of A}.

(Recall that a representation π : A → B(H) is said to be non-degenerate if π(A)H is

dense in H. If A is unital, non-degenerate representations are precisely unital represen-

tations).

Remark 2.1 Note that C∗(A) exists if and only if ||x|| <∞ for every x ∈ A.

Consider the natural map A → C∗(A). We abuse notation and write the image of an

element x ∈ A under this map by x itself. The C∗-algebra C∗(A) is called the “universal

C∗-algebra of A” because it satisfies the following universal property. Keep the foregoing

notation.
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Proposition 2.2 Suppose B is a C∗-algebra and let π : A → B be a ∗-homomorphism.

Then there exists a unique ∗-homomorphism π̃ : C∗(A) → B such that π̃(x) = π(x) for

every x ∈ A.

Proof. Uniqueness is obvious. For existence, let p : A → [0,∞) be defined by p(x) =

||π(x)||. Note that p is a C∗-seminorm on A. Thus ||π(x)|| ≤ ||x|| for every x ∈ A. This

implies that π descends to a ∗-homomorphim say π̃ : A/I → B. It is clear that π̃ is

bounded. Denote the extension to C∗(A) again by π̃. Then π̃ is the required map. This

completes the proof. 2

Often, the algebra A itself is given by generators and relations. For example, consider

the following statements

(1) Let A be the universal unital ∗-algebra generated by a single element u such that

u∗u = 1 and uu∗ = 1.

(2) Let A be the universal unital ∗-algebra generated by v such that v∗v = 1.

(3) Let A be the universal unital ∗-algebra generated by P,Q such that PQ−QP = 1.

(4) Let A be the universal ∗-algebra generated by {pi}ni=1 such that p2i = pi = p∗i and

pipj = δijpi.

What do we mean in each statement ? For example in (1), we mean that there exists a

∗-algebra A, unique up to unique isomorphism, which is generated by a single element u

and has the following universal property : Suppose B is a unital ∗-algebra and w ∈ B be

such that w∗w = ww∗ = 1. Then there exists a unique ∗-homomorphism π : A → B such

that π(u) = w. We do the same for (2), (3) and (4). The justification of the existence of

such an A is always by abstract nonsense.

Consider now the following statement. Let T be the universal unital C∗-algebra

generated by a single element v such that v∗v = 1. What do we mean by this ? First,

we take the universal unital ∗-algebra generated by v such that v∗v = 1. Denote it by

A. Then T = C∗(A). The C∗-algebra T is called the Toeplitz algebra in the literature.

But, does T exist ? Yes, it exists. For suppose p is a C∗-seminorm on A. Define

Ip := {a ∈ A : p(a) = 0}. Then p descends to a C∗-norm on A/Ip. Let Ap be the

completion of A/Ip. Since v + Ip is an isometry in Ap and consequently ||v + Ip|| ≤ 1.

Thus any word in v and v∗ has p-norm at most 1. Now let x be an element in A. Write

x =
∑

xα
wα where wα is a word in v and v∗. Then p(x) ≤

∑
α |xα| and the latter bound

is independent of p. Consequently ||x|| <∞ for every x.

11



Remark 2.3 The argument outlined above works in the following situtation. Suppose A
is a ∗-algebra generated by {xi} and each xi has p-norm atmost 1 for every C∗-seminorm

p on A. Then C∗(A) exists. However C∗(A) might be zero.

The Toeplitz algebra has the following “universal property”

Exercise 2.2 Suppose B is a unital C∗-algebra and w ∈ B is such that w∗w = 1. Then

there exists a unique ∗-homomorphims π : T → B such that π(v) = w.

Let us now show that the Toeplitz algebra is non-zero. We show this by producing

a non-zero representation of T . Consider the Hilbert space `2(N). Let {δn}n≥1 be the

standard orthonormal basis for `2(N). Let S : `2(N) → `2(N) be the unique operator

such that S(δn) = δn+1. Then S is an isometry, i.e. S∗S = 1. The universal property

of T guarantees that there exists a unique ∗-homomorphism π : T → C∗(S) such that

π(v) = S. Later, we will show that π is an isomorphism.

To summarise, we usually, but not always, apply Remark 2.3 to justify the existence

of the universal C∗-algebra. To show, it is non-zero, we need to find a non-zero rep-

resentation of the universal ∗-algebra A on a Hilbert space or equivalently a non-zero

∗-homomorphism from A to a C∗-algebra. Use this to do the following exercises.

Exercise 2.3 Show that the universal unital C∗-algebra generated by u such that u∗u =

uu∗ = 1 exists.

Exercise 2.4 Show that the universal unital C∗-algebra generated by {pi}ni=1 satisfying

the relations p2i = pi = p∗i and pipj = δijpi exists.

Let us identify the universal C∗-algebras considered in the above two exercises concretely.

Proposition 2.4 The algebra of continuous functions on the circle T denoted C(T) is

the universal C∗-algebra generated by u such that u∗u = uu∗ = 1.

Proof. We denote the function T 3 z → z ∈ C by z itself. Let A be the universal

C∗-algebra generated by u such that u∗u = uu∗ = 1. Note that u is a unitary in A. The

continuous functional calculus gives a ∗-homomorphism C(T) → A which maps z → u.

Call it ρ. The universal property of A gives a map π : A → C(T) such that π(u) = z.

It is clear that π ◦ ρ(z) = u and ρ ◦ π(u) = z. Since u and z generates A and C(T)

respectively, it follows that π and ρ are inverses of each other. This completes the proof.

2
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Proposition 2.5 Let A be the universal C∗-algebra generated by {pi : i ∈ N} such that

p2i = pi = p∗i and pipj = δijpi. Then A ' C0(N).

Proof. We leave the proof that A exists to the reader. Let ei ∈ C0(N) be such that

the ith coordinate of ei is 1 and the rest of the coordinates are zero. It is clear that

e2i = ei = e∗i and eiej = δijei. By the universal property, there exists a ∗-homomorphism

π : A→ C0(N) such that π(pi) = ei.

Claim: Let B be a C∗-algebra and q1, q2, · · · , qn be a finite sequence of orthogonal

projections. Then for every λ1, λ2, · · · , λn ∈ C,

||
n∑
i=1

λiqi|| ≤ sup
1≤i≤n

|λi|.

By representing B faithfully on a Hilbert space say H, we can assume that q1, q2, · · · , qn
are operators on H. Then for a unit vector ξ ∈ H, we have

||
n∑
i=1

λiqiξ||2 =
n∑
i=1

|λi|2〈qiξ|ξ〉

≤ ( sup
1≤i≤n

|λi|)2(〈
n∑
i=1

qiξ|ξ〉

≤ ( sup
1≤i≤n

|λi|)2 ( since
n∑
i=1

qi is a projection).

Hence

||
n∑
i=1

λiqi|| ≤ sup
1≤i≤n

|λi|. (2.3)

Consider the dense ∗-subalgebra Cc(N) of C0(N). Note that {ei : i ∈ N} is a basis

for Cc(N). Let ρ : Cc(N) → A be the linear map such that ρ(ei) = pi. Clearly ρ is a

∗-homomorphism. The estimate 2.3 implies that ρ is bounded. Denote the extension

of ρ to C0(N) by ρ itself. Then ρ ◦ π agrees with the identity map on the generators.

Consequently ρ ◦ π is identity. Similarly π ◦ ρ is identity. This shows that ρ and π are

inverses of each other. Hence π is an isomorphism. This completes the proof. 2

Let us give a non-example. The universal C∗-algebra generated by two elements P,Q

such that PQ−QP = 1 is zero. It suffices to show the following.

Proposition 2.6 Let H be a non-zero Hilbert space. Then there does not exist bounded

operators P and Q on H such that PQ−QP = 1.
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Proof. Suppose, on the contrary, assume that there exist P,Q ∈ B(H) such that the

commutator [P,Q] = PQ−QP = 1. For a bounded operator T , let σ(T ) be the spectrum

of T . Recall that for bounded operators T, S, σ(TS) ∪ {0} = σ(ST ) ∪ {0}.
Choose λ ∈ σ(QP ). Note that λ + 1 ∈ σ(QP + 1) = σ(PQ) ⊂ σ(PQ) ∪ {0} ⊂

σ(QP ) ∪ {0}. Suppose λ ∈ {−1,−2,−3, · · · }. Then λ + k ∈ σ(QP ) ∪ {0} for every

positive integer k. The compactness of σ(QP ) implies that there exists a positive integer

k such that λ = −k. The fact that λ ∈ σ(QP ) =⇒ λ + 1 ∈ σ(QP ) ∪ {0} implies that

−1 ∈ σ(QP ).

Then −1 ∈ σ(PQ). The relation PQ − QP = 1 implies that −2 ∈ σ(QP ) which

in turn implies −2 ∈ σ(PQ). By induction, we obtain −k ∈ σ(PQ) for every positive

integer k which contradicts the fact that σ(PQ) is bounded. This completes the proof.

2

When one talks of the universal C∗-algebra given in terms of generators and relations,

one should be cautious and decide first whether it exists or not and whether it is zero or is

non-zero. The notion of universal C∗-algebra is very handy and allows us to quickly define

group C∗-algebras and crossed products of discrete groups which provide important

examples of C∗-algebras.

Group C∗-algebras: Let G be a discrete group.1 Then C∗(G), called the full group

C∗-algebra of G, is defined to be the universal C∗-algebra generated by {us : s ∈ G}
which satisfy the following relations:

usut = ust

u∗s = us−1

for s, t ∈ G. Note that the above relations imply that ue is a multiplicative identity

of C∗(G) where e is the identity element of G. Moreover {us : s ∈ G} is a family of

“unitaries” and consequently ||us|| ≤ 1 for every g ∈ G. Thus, by Remark 2.3, it follows

that C∗(G) exists. The next thing to show is that C∗(G) is non-zero.

Consider the Hilbert space `2(G) and let {εt : h ∈ G} be an orthonormal basis for

`2(G). For s ∈ G, let λs be the unitary operator on `2(G) such that

λs(εt) = εst

for t ∈ G. The map G 3 s → λs ∈ B(`2(G)) is called the left regular representation

of G. Then clearly λsλt = λst and λ∗s = λs−1 . Thus there exists a unique unital ∗-
1We always assume some sort of separability hypothesis. For instance, we mostly assume topological

spaces are second countable, discrete groups are second countable, Hilbert spaces are separable etc...

We do things as if this hypothesis is always there and make no explicit mention of this.
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homomorphism λ̃ : C∗(G) → B(`2(G)) such that λ̃(us) = λs. This shows that C∗(G)

is non-zero. The image of π is a C∗-subalgebra of B(`2(G)) and is called the reduced

C∗-algebra of G and is denoted C∗red(G). Note that C∗red(G) is the C∗-algebra generated

by {λs : s ∈ G}. Sometimes, we abuse notation and write λ̃ simply by λ. It is natural

to ask whether λ̃ is an isomorphism. It turns out that λ̃ is an isomorphism if and only if

the group G is amenable. Abelian groups are amenable. An example of a non-amenable

group is the free group on 2 generators F2.

Let us take a closer look at C∗(G). Let A be the universal ∗-algebra generated by

{us}s∈G such that usut = ust and u∗s = us−1 . We first obtain a concrete description of A.

Let Cc(G) denote the space of finitely supported complex valued functions on G. Define

a ∗-algebraic structure on Cc(G) as follows. For f, g ∈ Cc(G), let f ∗ g : G → C be

defined by

f ∗ g(s) =
∑
t∈G

f(st)g(t−1).

Note that f ∗g is well defined. For f and g are finitely supported. Also f ∗g ∈ Cc(G). The

multiplication operation defined above is called the convolution. Define a ∗-operation on

Cc(G) by f ∗(s) = f(s−1).

Exercise 2.5 Show that Cc(G) with the convolution and the ∗-operation defined above

is a ∗-algebra.

The algebra Cc(G) is usually called the group algebra of G and the usual notation is

C[G]. For s ∈ G, let δs ∈ Cc(G) be given by

δs(t) :=


1 if t = s ∈ X,

0 if t 6= 0.

(2.4)

Observe that δs ∗ δt = δst and δ∗s = δs−1 . Note that δe is the multiplicative identity of

Cc(G). Thus, there exists a ∗-homomorphism π : A → Cc(G) such that π(us) = δs for

s ∈ G.

Lemma 2.7 The map π is an isomorphism.

Proof. We define the inverse map directly by setting ρ(δs) = us. This is possible provided

we can show that {δs : s ∈ G} is a basis for Cc(G). We claim that {δs : s ∈ G} is a basis

for Cc(G). Let f ∈ Cc(G) be given then f =
∑

s∈G f(s)δs. Moreover if f =
∑

s∈G asδs,

then applying the equality at an arbitrary point t, we get f(t) = at. This proves our
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claim. Let ρ : Cc(G) → A be the linear map such that ρ(δs) = us. Then clearly ρ ◦ π
and π ◦ρ agrees with identity maps on the generators and hence agrees with the identity

maps everywhere. This shows that ρ and π are inverses of each other. Hence the proof.

2

Thus C∗(G) is the completion of Cc(G) where the norm on Cc(G) is given by

||f || := sup{π(f) : π is a unital representation of Cc(G) on a Hilbert space}.

How does representations of Cc(G) arise ? Let H be a Hilbert space and U : G →
B(H) be a map. We say that U is a unitary representation if

(1) for s, t ∈ G, UsUt = Ust, and

(2) for s ∈ G, Us is a unitary.

The set of unitaries U(H) is a group and a unitary representation of G on H is simply a

group homomorphism from G to U(H). Let U : G→ U(H) be a unitary representation.

Then U∗s = Us−1 for s ∈ G. Thus there exists a unique unital ∗-homomorphism, denoted

πU : Cc(G)→ B(H) such that

πU(δs) = Us

for s ∈ G. Conversely, suppose π is a unital representation of Cc(G) on a Hilbert space

H. Set Us = π(δs). Then {Us}s∈G is a unitary representation of G. Clearly πU and π

agrees on {δs : s ∈ G}. Since {δs : s ∈ G} is a basis for Cc(G), it follows that π = πU .

Thus, representations of Cc(G) are the “same” as the unitary representations of the

group G. Thus for f ∈ Cc(G),

||f ||C∗(G) := sup{πU(f) : U is a unitary representation of G}.

Representations of C∗(G) are in one-one correspondence with representations of

Cc(G). To summarise, C∗(G) is the C∗-algebra that captures the representation the-

ory of the group G.

Remark 2.8 The map U → πU respects unitary equivalence, irreducibility, direct sum,

etc..... Thus, the study of the representation theory of groups is equivalent to the study

of the representation theory of the associated full group C∗-algebra. This has advantages,

for then we can use (operator) algebraic techniques. My favourite application of this

philosophy is the proof of the fact that a finite group admits only finitely many irreducible

representations, up to unitary equivalence.
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This is because if G is a finite group then C∗(G) is a finite dimensional C∗-algebra.

Consequently, C∗(G) is a direct sum of “matrix algebras”. But, for every n, Mn(C) has

only one irreducible representation up to equivalence.

Let us identify the full C∗-algebra of a discrete abelian group. Let G be a discrete

abelian group. Denote the set of homomorphisms from G to the multiplicative group

T by Ĝ. The set Ĝ has a group structure where the group multiplication is pointwise

multiplication. The map G 3 s → 1 ∈ T is the identity element of G. For χ ∈ Ĝ,

the inverse of χ is χ. We endow Ĝ with the topology of pointwise convergence, i.e. the

product topology. The convergence of nets is as follows. Suppose (χα) is a net in Ĝ

and χ ∈ Ĝ. Then χα → χ if and only if χα(s) → χ(s) for every s ∈ G. By Tychonoff

theorem, it follows that Ĝ is compact. It is routine to check that Ĝ is a topological

group.

Proposition 2.9 Let G be a discrete abelian group. Then C∗(G) is isomorphic to C(Ĝ).

Proof. Since the groupG is abelian, it follows that A := C∗(G) is commutative. Moreover

A is unital. It suffices to show that Â is homeomorphic to Ĝ. Let χ ∈ Ĝ be given.

Then, by the universal property, there exists a homomorphism χ : A → C such that

χ(us) = χ(s). Since {us : s ∈ G} generates C∗(G), the map

Ĝ 3 χ→ χ ∈ Â

is 1-1. Let ω : A → C be a character. Since {us : s ∈ G} is a set of unitaries, it follows

that for every s ∈ G, ω(us) ∈ T. Set χ : G→ T by χ(s) = ω(us). It is clear that χ is a

character of G and ω = χ. This proves that the map Ĝ 3 χ→ χ ∈ Â is onto.

Let (χα) be a net in Ĝ such that (χα) → χ ∈ Ĝ. Note that {χα} is uniformly

bounded. Thus to show χα → χ, it suffices to check χα(x) → χ(x) for x in a total set

F of A. Set F := {us : s ∈ G} and observe that F is total in A. Clearly χα(x) → χ(x)

for every x ∈ F . Hence the map Ĝ 3 χ→ χ ∈ Â is continuous. Since Ĝ and Â are both

compact Hausdorff, it follows that the map χ→ χ is a homeomorphism. This completes

the proof. 2

Crossed products: Let G be a discrete group and let A be a C∗-algebra. By an

action of G on A, we mean a family α := {αs}s∈G of automorphisms of A such that

αs ◦ αt = αst for s, t ∈ G. Such a triple (A,G, α) is called a C∗-dynamical system. Here

is an example of a dynamical system.
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Example 2.10 Let X be a locally compact Hausdorff space and G be a discrete group

which acts on X via homeomorphisms on the left. For s ∈ G and f ∈ C0(X), define

αs(f)(x) = f(s−1x).

Then α := {αs}s∈G is an action of G on C0(X). Note that G leaves Cc(X) invariant

where Cc(X) denotes the dense subalgebra of compactly supported continuous functions

on X.

Let G be a discrete group and let A be a unital C∗-algebra. Suppose G acts on A and let

α be the action. The full crossed product, denoted AoαG, is defined to be the universal

unital C∗-algebra generated by a copy of A and unitaries {us}s∈G such that usut = ust

and usau
∗
s = αs(a) for s ∈ G and a ∈ A. Note that if A = C and α is the trivial action

then Aoα G ' C∗(G).

Let us take a closer look at the C∗-algebra A oα G. First, let B be the universal

∗-algebra generated by a copy of A and unitaries {us}s∈G. The relations imply that

the linear span of {asus : as ∈ A, s ∈ G} is B. Our experience with group C∗-algebras

suggest that we should treat B as the algebra of functions defined on G but now taking

values in A. Thus consider Cc(G,A), i.e. the set of functions f : G → A such that f is

finitely supported.

We make Cc(G,A) into a ∗-algebra by defining the multiplication and the ∗-operation

as follows: for f, g ∈ Cc(G,A),

f ∗ g(s) =
∑
t∈G

f(t)αt(g(t−1s))

f ∗(s) = αs(f(s−1)∗)

for f, g ∈ Cc(G,A). It is a tedious but a routine exercise to verify that the multiplication

and the ∗-operation defined above makes Cc(G,A) into a ∗-algebra. Note that for f, g ∈
G, f ∗ g(s) =

∑
t∈G f(st−1)αst−1(g(t)). For a ∈ A and s ∈ G, denote the element of

Cc(G,A) which vanishes at points other than s and whose value at s is a by a⊗ δs. Note

that for f ∈ Cc(G,A), f =
∑

s∈G f(s)⊗ δs.

Exercise 2.6 Keep the foregoing notation. Prove that for a, b ∈ A and s, t ∈ G,

(a⊗ δs) ∗ (b⊗ δt) = aαs(b)⊗ δst
(a⊗ δs)∗ = αs−1(a∗)⊗ δs−1

18



The above relations and the universal property of B together imply that there exists a

∗-homomorphism λ : B → Cc(G,A) such that λ(a) = a ⊗ δe and λ(us) = 1 ⊗ δs. Let

µ : Cc(G,A)→ B be defined by µ(f) =
∑

s∈G f(s)us. Note that µ is a ∗-homomorphism.

(The multiplication and the ∗-operation are defined in such a way on Cc(G,A) precisely

to make this map a homomorphism). Clearly λ◦µ = Id. Note that µ◦λ agrees with the

identity map on A and {us : s ∈ G} which generates B as an algebra. Thus µ ◦ λ = Id.

Hence λ and µ are inverses of each other.

Then A o G is the enveloping C∗-algebra of Cc(G,A). Note that the ∗-algebra

Cc(G,A) makes sense even if A is not unital.

Definition 2.11 Suppose G is a discrete group, A is a C∗-algebra and α := {αs}s∈G
is an action of G on A. The full crossed product, denoted A oα G, is defined as the

enveloping C∗-algebra of Cc(G,A).

We need to show that AoαG exists and is non-zero. This requires us to prove that the

universal norm is finite and we are forced to understand non-degenerate representations

of Cc(G,A) in more concrete terms. We will make use of the following remark in the

sequel.

Remark 2.12 We will repeatedly make use of the following. Suppose H1 and H2 are

Hilbert spaces and S1 and S2 are total subsets of H1 and H2 respectively. Let φ : S1 → S2

be a map such that 〈φ(x)|φ(y)〉 = 〈x|y〉 for x, y ∈ S1. Then there exists a unique isometry

V : H1 → H2 which extends φ. Moreover if φ is a bijection, the isometry V is a unitary.

Let λ : Cc(G,A) → B(H) be a non-degenerate representation. Since {a ⊗ δs : a ∈
A, s ∈ G} spans Cc(G,A), it follows that {λ(a ⊗ δs)ξ : a ∈ A, s ∈ G, ξ ∈ H} is total in

H. Fix r ∈ G. For a, b ∈ A, s, t ∈ G and ξ, η ∈ H, calculate as follows to observe that

〈λ(αr(a)⊗ δrs)ξ|λ(αr(b)⊗ δrt)η〉
= 〈ξ|λ(αr(a)⊗ δrs)∗λ(αr(b)⊗ δrt)η〉
= 〈ξ|λ((αs−1r−1(αr(a

∗))⊗ δs−1r−1) ∗ (αr(b)⊗ δrt))η〉
= 〈ξ|λ(αs−1(a∗b)⊗ δs−1t)η〉
= 〈ξ|λ(a⊗ δs)∗λ(b⊗ δt)η〉
= 〈λ(a⊗ δs)ξ|λ(b⊗ δt)η〉.

Appealing to Remark 2.12, we conclude that there exists a unique unitary, denoted Ur,

such that Ur(λ(a ⊗ δs)ξ) = λ(αr(a) ⊗ δrs)ξ for a ∈ A, s ∈ G and ξ ∈ H. By evaluating
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on the total set {λ(a ⊗ δs)ξ : a ∈ A, s ∈ G, ξ ∈ H}, we conclude that UrUs = Urs for

every r, s ∈ G. Thus U := {Us}s∈G is a unitary representation of G on H.

Define for a ∈ A, π(a) = λ(a⊗ δe). Then π is a ∗-representation of A on H.

Exercise 2.7 Prove by evaluating on the total set {λ(a ⊗ δs)ξ : a ∈ A, s ∈ G, ξ ∈ H}
that

(1) the representation π is a ∗-representation,

(2) the family U := {Us}s∈G is a unitary representation of G,

(3) for a ∈ A and s ∈ G, Usπ(a)U∗s = π(αs(a)) or equivalently Usπ(a) = π(αs(a))Us.

Such a pair (π, U) is called a covariant representation of the dynamical system.

Keep the foregoing notation. The representation λ can be recovered from the pair (π, U).

Note, again by evaluating on the total set, that λ(a ⊗ δs) = π(a)Us. Since the set

{λ(a⊗δs)ξ : a ∈ A, s ∈ G, ξ ∈ H} is total, it follows that {π(a)Usξ : a ∈ A, s ∈ G, ξ ∈ H}
is total in H. This implies that the representation π is non-degenerate.

We can reverse the above process. First a definition.

Definition 2.13 Consider a C∗-dynamical system (A,G, α). Let π : A → B(H) be a

representation and U : G → U(H) be a unitary representation. We say that the pair

(π, U) is a covariant representation of the dynamical system (A,G, α) if for a ∈ A,

s ∈ G,

Usπ(a)U∗s = π(αs(a)).

We always assume that π is non-degenerate.

Let (π, U) be a covariant representation of the dynamical system (A,G, α). Define a map

λ : Cc(G,A) → B(H) by λ(f) =
∑

s∈G π(f(s))Us. It is clear that λ(f ∗ g) = λ(f)λ(g)

and λ(f)∗ = λ(f ∗) if f and g are of the form a⊗ δs. But since {a⊗ δs} spans Cc(G,A),

it follows that λ is a ∗-homomorphism. Note that λ(a ⊗ δe) = π(a). Hence λ is non-

degenerate. We denote this map λ by π o U .

Exercise 2.8 Let (π, U) be a covariant representation of (A,G, α). Prove that the co-

variant representation that we obtain if we apply the process described before Definition

2.13 to the non-degenerate representation π o U is (π, U).
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Thus non-degenerate representations of the ∗-algebra Cc(G,A) are in 1-1 correspon-

dence with covariant representations of the dynamical system (A,G, α). Therefore, the

universal norm on Cc(G,A) is given by

||f || = sup{||(π o U)(f) : (π, U) is a covariant representation of (A,G, α)}.

For f ∈ Cc(G,A), let ||f ||1 :=
∑

s∈G ||f(s)||. Let (π, U) be a covariant representation of

(A,G, α). Note that for f ∈ Cc(G,A),

||(π o U)(f)|| = ||
∑
s∈G

π(f(s))Us|| ≤
∑
s∈G

||π(f(s))||||Us|| ≤
∑
s∈G

||f(s)|| = ||f ||1.

Hence ||f || ≤ ||f ||1 for every f ∈ Cc(G,A). This proves that || || is a genuine C∗-

seminorm on Cc(G,A). Next we show that || || is indeed a norm on Cc(G,A) by exhibiting

a covariant representation.

Let π : A → B(H) be a faithful representation. Consider the Hilbert space H̃ :=

H⊗ `2(G). Let {εt : t ∈ G} be the standard orthonormal basis for `2(G). For a ∈ A, let

π̃(a) be the bounded operator on H̃ given by the equation π̃(a)(ξ⊗ εt) = π(α−1t (a))⊗ εt.
Let {λs : s ∈ G} be the left regular representation of `2(G). For s ∈ G, set λ̃s = 1⊗ λs.

Exercise 2.9 Verify that (π̃, λ̃) is a covariant representation of (A,G, α).

Proposition 2.14 The map Cc(G,A) 3 f → (π̃ o λ̃)(f) ∈ B(H̃) is injective.

Proof. Suppose (π̃ o λ̃)(f) = 0. For s ∈ G, set as = f(s). Then for every ξ, η ∈ H and

r, t ∈ G, we have
∑

s∈G〈π̃(as)λ̃s(ξ ⊗ εr)|η ⊗ εt〉 = 0. This implies that for ξ, η ∈ H and

r, t ∈ G, ∑
s∈G

〈π(α−1sr (as))ξ ⊗ εsr|η ⊗ εt〉 = 0.

Fix s ∈ G. In the previous expansion, substitute r = s−1 and t = e to obtain 〈π(as)ξ|η〉 =

0 for every ξ, η ∈ H. But π is faithful. This implies that as = 0. Hence f = 0. This

completes the proof. 2

Keep the foregoing notation. For f ∈ Cc(G,A), define ||f ||red = ||(π̃ o λ̃)(f)||. By

what we have shown, it follows that || ||red is a C∗-norm on Cc(G,A). By definition,

||f ||red ≤ ||f || for f ∈ Cc(G,A). Hence the universal norm || || is a C∗-norm.

Definition 2.15 The completion of Cc(G,A) with respect to the universal norm || || is

called the full crossed product and is denoted Aoα G.
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Remark 2.16 It is a remarkable fact that || ||red is independent of the chosen faithful

representation π. We will prove this in the next chapter. The norm || ||red is called the

reduced norm on Cc(G,A). The completion of Cc(G,A) with respect to the reduced norm

is called the reduced crossed product and is denoted Aor,α G.

Clearly there is a natural surjective homomorphism from AoαG→ Aor,αG. Unless

there is some amenability hypothesis, we cannot expect the above map to be an isomor-

phism.

Exercise 2.10 Suppose A is a dense ∗-algebra of A and assume that αs(A) ⊂ A for

every s ∈ G. Prove that Aoα G := span{a⊗ δs : a ∈ A, s ∈ G} is a dense ∗-subalgebra

of Aoα G.

Let us identity one example of a crossed product explicity. Let G be a discrete group and

let G acts on the topological space G by left translations. Consider the induced action

α of G on C0(G). For s ∈ G, let χs be the characteristic function at s. Then χs ∈ Cc(G)

and αs(χt) = χst.

Proposition 2.17 The crossed product C0(G) oα G is isomorphic to K(`2(G)).

Proof. The algebra K(`2(G)) has a universal picture. Thus, it suffices to exhibit appro-

priate matrix units in C0(G)oαG. Let {Es,t : s, t ∈ G} be the natural system of matrix

units in K(`2(G)) which correspond to the standard orthonormal basis {εt : t ∈ G} of

`2(G).

For s, t ∈ G, let es,t := χs ⊗ δst−1 . For q, r, s, t ∈ G, calculate as follows to observe

that

eq,r ∗ es,t = (χq ⊗ δqr−1) ∗ (χs ⊗ δst−1)

= χqχqr−1s ⊗ δqr−1st−1

= δq,qr−1sχq ⊗ δqt−1

= δr,sχq ⊗ δqt−1

= δr,seq,t.

For s, t ∈ G, observe that

es,t = (χs ⊗ δst−1)∗ = αts−1(χs)⊗ ts−1 = χt ⊗ δts−1 = et,s.

Thus {es,t : s, t ∈ G} forms a system of matrix units. Thus, by the universal property

of K(`2(G)), there exists a ∗-homomorphism λ : K(`2(G)) → C0(G) oα G such that

λ(Es,t) = es,t. By Exercise 2.10, it follows that λ is onto. Since K(`2(G)) is simple, it

follows that λ is one one. Hence λ is an isomorphism. This completes the proof. 2
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Exercise 2.11 Consider the Hilbert space `2(G). For f ∈ C0(G), let M(f) be the

bounded operator on `2(G) defined by the equation

M(f)ξ(s) := f(s)ξ(s)

for ξ ∈ `2(G). Show that M : C0(G) → B(`2(G)) is a non-degenerate ∗-representation.

Let λ := {λs}s∈G be the left regular representation of G on `2(G). Prove that (M,λ) is

a covariant pair.

Use the fact that C0(G)oαG is simple to show that Moλ implements an isomorphism

between C0(G) oα G and K(`2(G)).

Let us end this section by listing out a few examples of universal C∗-algebras which

have played crucial role in the development of the subject.

Cuntz algebra On : Let n ≥ 2. The Cuntz algebra On is defined to be the universal

unital C∗-algebra generated by isometries s1, s2, · · · , sn such that

n∑
i=1

sis
∗
i = 1.

Note that {sis∗i : i = 1, 2, · · · , n} is a family of projections which add up to 1 which is

again a projection. Thus the projections {sis∗i }ni=1 form a family of mutually orthogonal

projections which is equivalent to saying s∗i sj = 0 if i 6= j. The Cuntz algebra On is

simple.

The non-commutative torus Aθ : Let θ ∈ R. The non-commutative torus Aθ is

defined to be the universal C∗-algebra generated by two unitaries u, v such that uv =

e2πiθvu. Define Rθ : T → T by Rθ(z) = e−2πiθz. Note that Rθ is a homeomorphism of

T . Consequently, this gives rise to an action of the cyclic group Z on C(T). Show that

C(T) o Z is isomorphic to Aθ. If θ is irrational, then Aθ is simple.

The computation of K-theoretic invariants for the two C∗-algebras listed above were

significant breakthroughs in operator K-theory. The non-commutative torus still re-

mains one of the widely studied example in noncommutative geometry.

The odd dimensional quantum sphere : Let 0 < q < 1 be given and ` ≥ 0. The

C∗-algebra C(S2`+1
q ) of the quantum sphere S2`+1

q is the universal C∗-algebra generated
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by elements z1, z2, . . . , z`+1 satisfying the following relations:

zizj = qzjzi, 1 ≤ j < i ≤ `+ 1,

z∗i zj = qzjz
∗
i , 1 ≤ i 6= j ≤ `+ 1,

ziz
∗
i − z∗i zi + (1− q2)

∑
k>i

zkz
∗
k = 0, 1 ≤ i ≤ `+ 1,

`+1∑
i=1

ziz
∗
i = 1.

Note that for ` = 0, the C∗-algebra C(S2`+1
q ) is the algebra of continuous functions C(T)

on the torus and for ` = 1, it is denoted C(SUq(2)). The C∗-algebra C(SUq(2)) is one of

the first examples in Woronowicz theory of compact quantum groups and is one of the

first examples whose representation theory was explicitly worked out.
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3 The Toeplitz algebra and the unilateral shift

In this section, we discuss the C∗-algebra generated by the unilateral shift on `2(N).

We prove Coburn’s theorem which asserts that it is the universal C∗-algebra generated

by a single isometry. Coburn’s theorem is a fundamental theorem and we will see its

importance when we discuss Cuntz’ proof of Bott periodicity in K-theory.

Definition 3.1 Let T be the universal unital C∗-algebra generated by v such that v∗v =

1. The C∗-algebra T is called the Toeplitz algebra.

By Remark 2.3, the C∗-algebra T exists. Consider the Hilbert space `2(N). Let {δn : n ≥
0} be the standard orthonormal basis for `2(N). Let S be the bounded operator on `2(N)

such that S(δn) = δn+1. The operator S is called the unilateral shift on `2(N). Clearly

S∗S = 1. Thus, by the universal property of T , there exists a unique ∗-homomorphism

T → C∗(S) which maps v → S. Here C∗(S) denotes the C∗-algebra generated by S.

Coburn’s theorem asserts that this map is indeed an isomorphism which is the main aim

of this section.

Let us take a closer look at the C∗-algebra C∗(S). For m,n ≥ 0, let Em,n = θδm,δn .

Set P := 1 − SS∗. Note that P = E0,0 and Em,n = SmPS∗n. Since the linear span of

{Em,n : m,n ∈ N} is dense in K(`2(N)), it follows that K(`2(N)) is contained in C∗(S).

Hence K(`2(N)) is an ideal in C∗(S). Note that Ṡ, the image of S under the canonical

surjection, in the quotient C∗(S)/K is a unitary. Thus the quotient is generated by a

single unitary Ṡ

Lemma 3.2 The spectrum of Ṡ in C∗(S)/K is T.

Proof. For z ∈ T, let Uz be the unitary defined by the equation Uz(δn) = znδn. Note that

UzSU
∗
z = zS for every z ∈ T. Fix z ∈ T. The map T → UzTU

∗
z defines an automorphism

of C∗(S) which leaves the ideal K invariant. Thus, it descends to an automorphism, let

us denote it by αz, on the quotient C∗(S)/K. Note that αz(Ṡ) = zṠ.

Denote the spectrum of Ṡ by σ(Ṡ). Fix z ∈ T. Since αz is an automorphism, it

follows that σ(αz(Ṡ)) = σ(Ṡ). But αz(Ṡ) = zṠ. Hence σ(αz(Ṡ)) = zσ(Ṡ). This implies

that σ(Ṡ) is invariant under multiplication by T. Since Ṡ is a unitary, it follows that

σ(Ṡ) is contained in T. Hence σ(Ṡ) = T. This completes the proof. 2

Denote the function T 3 z → z ∈ C by z itself. Now continuous functional calculus

and 3.2 implies that there exists a ∗-homomorphism C∗(S)→ C(T) which maps S → z.

Summarising our discussion, we have the following exact sequence

0 −→ K(`2(N)) −→ C∗(S) −→ C(T) −→ 0
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where the map C∗(S) → C(T) sends S → z and the map K → C∗(S) is the natural

inclusion.

The first step towards the proof of Coburn’s theorem is to derive a similar exact

sequence for the Toeplitz algebra T . We imitate what we did for C∗(S). Set p := 1−vv∗.
Then p 6= 0. For m,n ≥ 0, set em,n = vmpv∗n. Note that v∗p = 0. Hence v∗np = 0 for

every n ≥ 1. Taking adjoints, we get pvm = 0 if m ≥ 1. Note that v∗nvm = vm−n if

m ≥ n and if m < n then v∗nvm = v∗(n−m).

Let m1, n1,m2, n2 ≥ 0 be given. Suppose n1 > m2. Then

em1,n1em2,n2 = vm1pv∗n1vm2pv∗n2 = vm1pv∗(n1−m2)pv∗n2 = 0.

A similar calculation reveals that if m2 > n1 then em1,n1em2,n2 = 0. Clearly if m2 = n1,

then em1,n1em2,n2 = em1,n2 . Hence

em1,n1em2,n2 = δm2,n1em1,n2 .

Clearly e∗m,n = en,m for m,n ≥ 0. Thus em,n is a system of matrix units. Let I be the

closed linear span of {em,n : m,n ≥ 0}. Note that I is an ideal in T . Indeed I is the ideal

generated by p. By the universal property, there exists a homomorphism λ : T → C(T)

such that λ(v) = z. Since C(T) is the universal C∗-algebra generated by a single v such

that v∗v = 1 and 1− vv∗ = 0, it follows that the kernel of λ is I.

Thus, we obtain a short exact sequence

0 −→ I −→ T −→ C(T) −→ 0.

Theorem 3.3 (Coburn) The natural map T → C∗(S) which sends v → S is an iso-

morphism.

Proof. Consider the two short exact sequences which are

0 −→ I −→ T −→ C(T) −→ 0.

and

0 −→ K(`2(N)) −→ C∗(S) −→ C(T) −→ 0

We have vertical arrows from the top sequence to the bottom sequence making it into a

commutative diagram. Here the map T → C∗(S) is the map that sends v to S and the

map C(T)→ C(T) is the identity map. Now an application of the five lemma yields the

proof. 2
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Next, we prove the Wold decomposition of a single isometry, a result which describes

how a generic isometry looks like. Consider the isometry S with multiplicity, i.e. consider

a Hilbert space K and look at S⊗ 1 on `2(N)⊗K. Suppose U is a unitary on a different

Hilbert space say H1. Then

[
S ⊗ 1 0

0 U

]
is an isometry on (`2(N)⊗K)⊕H1. The Wold

decomposition asserts that every isometry, up to a unitary equivalence, is of this form.

Theorem 3.4 (Wold decomposition) Let H be a separable Hilbert space and V be

an isometry on H. Then there exists Hilbert spaces K and H1, a unitary U on H1 and

a unitary W : H → (`2(N)⊗K)⊕H1 such that

WVW ∗ =

[
S ⊗ 1 0

0 U

]
.

First a lemma.

Lemma 3.5 Let A be a C∗-algebra and I ⊂ A be an ideal. Suppose π : I → B(H) is a

non-degenerate representation. Then there exists a unique representation π̃ : A→ B(H)

such that π̃(x) = π(x) for x ∈ I.

Proof. Any non-degenerate representation can be written as a direct sum of cyclic rep-

resentations. A moment’s thought reveals that it suffices to prove the lemma when π is

cyclic. Thus let π be cyclic and ξ ∈ H be a cyclic vector, i.e. {π(x)ξ : x ∈ I} is dense in

H. Fix a ∈ A. Calculate as follows to observe that for x ∈ I,

〈π(ax)ξ|π(ax)ξ〉 = 〈π(x∗a∗ax)ξ|ξ〉
≤ ||a||2〈π(x∗x)ξ|ξ〉 (since x∗a∗ax ≤ ||a||2x∗x)

≤ ||a||2〈π(x)ξ|π(x)ξ〉.

The above calculation implies that there exists a unique bounded operator, denoted π̃(a)

such that π̃(a)π(x)ξ = π(ax)ξ for every x ∈ I. If a ∈ I then π̃(a)π(x)ξ = π(ax)ξ =

π(a)π(x)ξ for every x ∈ I. Since {π(x)ξ : x ∈ I} is dense in H, it follows that π̃(a) =

π(a). Evaluating on the dense set {π(x)ξ : x ∈ I}, it is routine to see that π̃ is a

∗-representation.

Uniqueness follows from the fact that {π(x)η : x ∈ I, η ∈ H} is total in H. This

completes the proof. 2

Proof of Theorem 3.4. Let V be an isometry on H. By Coburn’s theorem, there

exists a representation π : C∗(S) → B(H) such that π(S) = V . Let I := K(`2(N)). Set
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H0 = π(I)H and H1 = H⊥0 . Since I is an ideal of C∗(S), it follows that H0 and H1 are

invariant under π. Note that π(x) vanishes on H1 if x ∈ I. Thus π(V )|H1 is a unitary.

Set U := π(V )|H1 .

Restrict the representation π to I on H0. Then π|I is non-degenerate. Hence there

exists a Hilbert space K and a unitary W0 : H0 → `2(N)⊗K such that W0π(x)W ∗
0 = x⊗1

for x ∈ K(`2(N)). The representation W0π(.)W ∗
0 and x→ x⊗1 are both extensions to A

of the representation W0π(.)W0 defined on I. Hence W0π(x)W ∗
0 = x⊗1 for every x ∈ A.

Define

W : H0 ⊗H1 → (`2(N)⊗K)⊕H1

by W = W0⊕ Id. Then WVW ∗ = Wπ(S)W ∗ =

[
S ⊗ 1 0

0 U

]
. This completes the proof.

2

Remark 3.6 Here we have derived Wold decomposition from Coburn’s theorem. We

could for instance first prove Wold decomposition and derive Coburn’s theorem as a

corolllary. The derivation undertaken here is more operator algebraic in nature.

We could study the continuous analogue of the Toeplitz algebra, called the Wiener-

Hopf algebra and the continuous analogue of the Wold decomposition. Howeover, the

only proof that the author knows makes essential use of groupoid techniques and giving a

proof will take us too far a field. We merely contend ourselves by describing the results.

Consider the Hilbert space L2(0,∞). For t ≥ 0, define St : L2(0,∞)→ L2(0,∞) by

St(f)(s) :=


f(s− t) if t ≥ s,

0 if t < s

(3.5)

for f ∈ L2(0,∞). Note that for every t ≥ 0, St is an isometry and St1St2 = St1+t2 .

Moreover the family {St}t≥0 is strongly continuous, i.e. for f ∈ L2(0,∞), the map

[0,∞) 3 t → Stf ∈ L2(0,∞) is continuous. Such a family is called an isometric repre-

sentation of [0,∞) or a semigroup of isometries indexed by [0,∞).

Let λ := {λt : t ∈ R} be the left regular representation of R on L2(R). Denote the

orthogonal projection of L2(R) onto L2(0,∞) by E. For t ∈ R, set Wt = EλtE. Note

that for t ≥ 0, Wt = Vt and for t < 0, Wt = V ∗−t. For f ∈ L1(R), let Wf be the operator

on L2(0,∞), defined by

Wf :=

∫
f(t)Wtdt.
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The operator Wf is called the Wiener-Hopf operator with symbol f . The Wiener-Hopf

algebra, denoted W [0,∞) is defined as the C∗-subalgebra of B(L2(0,∞)) generated by

{Wf : f ∈ L1(R)}.
It is not difficult to show that W([0,∞)) is generated by {Wf : f ∈ L1(0,∞)}. The

main results are stated below.

(1) The C∗-algebra of compact operators on L2(0,∞) is contained in W([0,∞)) and

the quotient W([0,∞))/K ' C0(R). That is, we have the following short exact

sequence.

0 −→ K(L2(0,∞)) −→W([0,∞)) −→ C0(R) −→ 0.

(2) Coburn’s theorem: Suppose {Vt : t ≥ 0} is a strongly continuous isometric

representation on a Hilbert space H. Then there exists a unique representation

π :W([0,∞))→ B(H) such that

π(Wf ) =

∫
f(t)Vtdt

for every f ∈ L1(0,∞).

(3) Wold decomposition: Up to unitary equivalence, every isometric representation

of [0,∞) is of the form

[
St ⊗ 1 0

0 Ut

]
where {Ut : t ∈ R} is a strongly continuous

unitary representation of R.
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4 Measure theoretic preliminaries

Let X be a second countable locally compact Hausdorff topological space. Denote the

Borel σ-algebra of X, i.e. the σ-algebra generated by open subsets of X by BX . On a

locally compact space, we always consider this Borel σ-algebra. Let µ be a measure on

(X,BX). We say that µ is finite on compact sets if µ(K) <∞ for every compact K ⊂ X.

Measures which are finite on compact sets are called Radon measures. Let µ be a Radon

measure on (X,BX). Denote the algebra of continuous complex valued functions on X

with compact support by Cc(X). We have the following.

(1) The measure µ is regular, i.e. for every E ∈ BX ,

µ(E) = sup{µ(K) : K ⊂ E,K is compact}
= inf{µ(V ) : E ⊂ V, V is open}.

(2) The fact that µ is finite on compact sets implies that for f ∈ Cc(X), f is integrable

with respect to µ. Moreover, Cc(X) ⊂ Lp(X) for every 1 ≤ p ≤ ∞.

(3) The fact that µ is regular has the consequence that Cc(X) is dense in Lp(X) for

every 1 ≤ p <∞.

A linear functional φ : Cc(X)→ C is said to be positive if f ≥ 0 then φ(f) ≥ 0. Denote

the set of positive linear functionals on Cc(X) by Cc(X)∗+. Let µ be a Radon measure

on (X,BX). Define φµ : Cc(X)→ C by

φµ(f) =

∫
f(x)dµ(x)

for f ∈ Cc(X). Then φµ is a postive linear functional. Denote the set of Radon measures

by M(X).

Theorem 4.1 (Riesz representation theorem) The mapM(X) 3 µ→ φµ ∈ Cc(X)∗+
is a bijection.

Push forward measure: Let (X,BX) and (Y,BY ) be measurable spaces. Suppose

µ is a measure on (X,BX) and T : X → Y is a measurable map. For E ∈ BY , define

T∗µ(E) := µ(T−1(E)).
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Then T∗µ is a measure on (Y,BY ). The measure T∗µ is called the push forward of µ by

T . Keep the foregoing notation. Suppose f : Y → [0,∞] is measurable. Then∫
fd(T∗µ) =

∫
(f ◦ T )dµ.

Thus, a measurable function f : Y → C is integrable if and only if f ◦ T is integrable

and in that case ∫
fd(T∗µ) =

∫
(f ◦ T )dµ.

Inductive limit topology: Let X be a locally compact Hausdorff second countable

topological space. Suppose (fn) is a sequence in Cc(X) and f ∈ Cc(X). We say that

fn → f in the inductive limit topology if there exists a compact set K ⊂ X such that

(1) for every n ≥ 1, supp(fn) ⊂ K, and

(2) the sequence fn → f uniformly on X.

Suppose V is a topological vector space and T : Cc(X)→ V is a linear map. We say that

T is continuous with respect to the inductive limit topology if whenever fn is a sequence

in Cc(X) which converges to f in the inductive limit topology, T (fn)→ T (f) in V .

Exercise 4.1 Let X be a second countable locally compact Hausdorff topological space

and let µ be a Radon measure on X. Prove that the functional

Cc(X) 3 f →
∫
f(x)dµ(x) ∈ C

is continuous with respect to the inductive limit topology.

Exercise 4.2 Let X be a second countable locally compact Hausdorff topological space

and let µ be a Radon measure on X. Prove that the “natural” map Cc(X) → Lp(X) is

continuous with respect to the inductive limit topology for every 1 ≤ p <∞.

Haar measure: Let us now discuss the basics of Haar measure on a locally compact

group. The letter G stands for a locally compact, second countable, Hausdorff topological

group. The Borel σ-algebra of G is denoted BG. For s ∈ G, let σs : G → G be

defined by σs(t) = st and ρs : G → G be defined by ρs(t) = ts. For s ∈ G, let

Ls, Rs : Cc(G)→ Cc(G) be defined by

Lsf(t) = f(s−1t)

Rsf(t) = f(ts).
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A measure µ on (G,BG) is said to be left invariant if (σs)∗(µ) = µ for every s ∈ G.

By Riesz representation theorem, a Radon measure µ is left invariant if and only if∫
f(s−1t)dµ(t) =

∫
f(t)dµ(t)

for every f ∈ Cc(G) and s ∈ G. We accept the following theorem without proof. We

refer the reader to [9] for a proof.

Theorem 4.2 (Haar measure) Let G be a second countable locally compact Hausdorff

topological group. Then there exists a non-zero Radon measure µ which is left invariant.

Moreover, if µ and ν are two non-zero left invariant Radon measures then there exists

c > 0 such that ν = cµ.

Definition 4.3 A left invariant non-zero Radon measure on G is called a Haar measure

on G.

Note that any two Haar measures differ by a scalar. Of course, we could talk about a

right Haar measure. Fix a left Haar measure µ on G.

Proposition 4.4 If U is a non-empty open subset of G then µ(U) > 0.

Proof. Let U be a non-empty open subset of G. Suppose that µ(U) = 0. By left

invariance of µ, it follows that µ(xU) = 0 for every x ∈ G. Note that {xU : x ∈ G} is

an open cover of G. If K is a compact set then there exists x1, x2, · · · , xn ∈ G such that

K ⊂
⋃n
i=1 xiU . This has the implication that µ(K) = 0 for every compact set K. By

regularity, it follows that µ(E) = 0 for every Borel set E which is a contradiction. Hence

µ(U) > 0. 2

Exercise 4.3 Suppose f ∈ Cc(G) is non-negative and
∫
fdµ = 0. Prove that f is

identically zero.

For s ∈ G, let µs = (ρs−1)∗µ. Then µs is a left invariant Radon measure on G. Thus

there exists a positive scalar ∆(s) such that µs = ∆(s)µ. A moment’s thought reveals

that the map G 3 s → ∆(s) ∈ (0,∞) does not depend on the chosen Haar measure µ

and it is in fact a homomorphism. The function ∆ is called the modular function of the

group G.

Exercise 4.4 Let µ be a Haar measure on G. Prove that for f ∈ G,∫
f(ts−1)dµ(t) = ∆(s)

∫
f(t)dµ(t)

for f ∈ Cc(G) and s ∈ G.
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Proposition 4.5 Fix f ∈ Cc(G). The map G 3 s → Ls(f) ∈ Cc(G) and the map

G 3 s→ Rs(f) ∈ Cc(G) are continuous when Cc(G) is given the inductive limit topology,

i.e. if sn → s then Lsn(f)→ Ls(f) and Rsn(f)→ Rs(f) in the inductive limit topology.

Proof. Let sn be a sequence in G such that sn → s. Choose a compact set L such that

L contains {sn : n ≥ 1} ∪ {s}. Denote the support of f by K. Note that for t ∈ G,

supp(Lt(f)) ⊂ tK. Hence supp(Lsn(f)) and supp(Ls(f)) are contained in LK and LK

is compact.

Suppose Lsn(f) does not converge to Ls(f) uniformly. Then there exists ε > 0 and

subsequences tnk ∈ G such that

|Lsnk (f)(tnk)− Ls(f)(tnk)| ≥ ε.

The above inequality implies that tnk ∈ LK. But LK is compact. By passing to a sub-

sequence, if necessary, we can assume that tnk converges, say to t. Then Lsnk (f)(tnk) =

f(s−1nk tnk)→ f(s−1t). Similarly, Ls(f)(tnk)→ f(s−1t) which contradicts the fact that for

every k

|Lsnk (f)(tnk)− Ls(f)(tnk)| ≥ ε.

Hence the proof. 2

Exercise 4.5 Suppose G acts on a locally compact space X on the left. For s ∈ G, let

Ls : Cc(X)→ Cc(X) be defined by Ls(f) = f(s−1x). Show that for f ∈ Cc(X), the map

G 3 s→ Ls(f) ∈ Cc(X) is continuous where Cc(X) is given the inductive limit topology.

Show that for f ∈ C0(X), the map G 3 s → Ls(f) ∈ C0(X) is continuous where

C0(X) is given the norm topology. Here, the map Ls : C0(X)→ C0(X) is defined in the

same fashion. Hint: The inclusion Cc(X)→ C0(X) is continuous and has dense range.

Lemma 4.6 The modular function ∆ is continuous.

Proof. Choose f ∈ Cc(G) such that
∫
f(t)dµ(t) = 1. Note that for s ∈ G,∫

Rs−1f(t)dµ(t) =

∫
f(ts−1)dµ(s) = ∆(s)

∫
f(t)dµ(t) = ∆(s).

The above equality together with Proposition 4.5 imply that ∆ is continuous. 2

Remark 4.7 A locally compact group G is called unimodular if ∆ = 1. Abelian groups

are clearly unimodular. Compact groups are unimodular. For. if G is compact, the image

∆(G) is a compact subgroup of (0,∞) and the only compact subgroup of (0,∞) is {1}.
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For E ∈ BG, define µ(E) = µ(E−1). It is clear that µ is a right invariant Haar

measure. Note that µ is the push forward measure of µ under the map s → s−1. The

proof of the next proposition is taken from [8].

Proposition 4.8 The measure µ and µ are absolutely continuous with respect to each

other. Moreover the Radon-Nikodym derivative is given by

dµ

dµ
(s) = ∆(s)−1.

Equivalently, for f ∈ Cc(G),∫
f(s−1)dµ(s) =

∫
f(s)∆(s)−1dµ(s).

Proof. Let I : Cc(G)→ C be the positive linear functional defined by the equation

I(f) =

∫
f(s−1)∆(s−1)dµ(s).

Let f ∈ Cc(G) and t ∈ G be given. Define g(s) = f(s−1)∆(s−1). Calculate as follows to

observe that

I(Lt(f)) =

∫
Lt(f)(s−1)∆(s−1)dµ(s)

=

∫
f(t−1s−1)∆(s−1)dµ(s)

= ∆(t)

∫
g(st)dµ(s)

=

∫
g(s)dµ(s)

= I(f).

Hence the measure ν associated to the linear functional I, via Riesz representation

theorem, is left invariant. Hence there exists C > 0 such that for f ∈ Cc(G),∫
f(s−1)∆(s)−1dµ(s) = C

∫
f(s)dµ(s).

Let f ∈ Cc(G) be given. Apply the above equality to the function s→ f(s−1)∆(s−1) to

see that ∫
f(s)dµ(s) = C

∫
f(s−1)∆(s−1)dµ(s) = C2

∫
f(s)dµ(s).

Hence C = 1. This completes the proof. 2

Let us end this section by describing the Haar measure for a few examples of topo-

logical groups.
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Example 4.9 The Lebesgue measure on Rd is a Haar measure.

Example 4.10 Let T be the unit circle. Note that T is a compact group with respect to

multiplication. We can identify C(T) as follows:

C(T) = {f : R→ C : f is continuous and f(x+ 1) = f(x), ∀x ∈ R}.

Define φ : C(T)→ C by the formula

φ(f) :=

∫ 1

0

f(x)dx.

Then φ is a positive linear functional on C(T). Thus there exists a measure µ on T such

that
∫
fdµ = φ(f) for every f ∈ C(T). Show that µ is a Haar measure.

Example 4.11 Let G be a countable discrete group. Then the counting measure on G

is a Haar measure on G.

Example 4.12 The ax+b-group: Let

G :=
{[a b

0 1

]
: a 6= 0, b ∈ R

}
.

Show that G is a closed subgroup of GL2(R). As a set G = R\{0} × R. Consider

the two measures dadb
|a| and dadb

a2
on G. One of them is right invariant and the other is

left invariant. Determine which one is right invariant and which one is left invariant.

Compute the modular function and show that the group G, also called the ax+b-group,

is not unimodular.
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5 Group C∗-algebras

Let G be an arbitrary, locally compact second countable topological group fixed for the

rest of this section. Fix a Haar measure µ. We write
∫
f(s)dµ(s) simply as

∫
f(s)ds.

Recall the following formulas: for f ∈ Cc(G) and t ∈ G,∫
f(t−1s)ds =

∫
f(s)ds∫

f(st)ds = ∆(t)−1
∫
f(s)ds∫

f(s−1)ds =

∫
f(s)∆(s−1)ds.

For f, g ∈ Cc(G), let f ∗ g : G→ C be defined by

f ∗ g(s) =

∫
f(st)g(t−1)dt =

∫
f(t)g(t−1s)ds.

The function f ∗g is called the convolution of f and g2. Define an involution operation ∗
on Cc(G) as follows. For f ∈ Cc(G), let f ∗ ∈ Cc(G) be defined by f ∗(s) = ∆(s)−1f(s−1).

Exercise 5.1 Show that for f, g ∈ Cc(G), f ∗ g ∈ Cc(G). If K denotes the support of f

and L denotes the support of g, prove that the support of f ∗ g is contained in KL.

Proposition 5.1 The space Cc(G) with convolution as multiplication and ∗ as involution

is a ∗-algebra.

Proof. The proof is really a straightforward application of Fubini’s theorem and the

left invariance of the Haar measure. For the reader’s benefit, let us verify that the

convolution is associative and ∗ is anti-multiplicative. Let f, g, h ∈ Cc(G) be given. For

2One could equally convolve L1 functions. But most of the time, it suffices to work with the dense

subspace Cc(G)
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s ∈ G, calculate as follows to observe that

(f ∗ g) ∗ h(s) =

∫
(f ∗ g)(st)h(t−1)dt

=

∫ (∫
f(str)g(r−1)dr

)
h(t−1)dt

=

∫ (∫
f(sr)g(r−1t)dr

)
h(t−1)dt ( left invariance of the Haar measure)

=

∫
f(sr)

(
g(r−1t)h(t−1)dt

)
dr (Fubini’s theorem)

=

∫
f(sr)(g ∗ h)(r−1)dr

= (f ∗ (g ∗ h))(s).

This proves that the convolution is associative. Let f, g ∈ Cc(G) be given. For f, g ∈
Cc(G) and s ∈ G, calculate as follows to observe that

(f ∗ g)∗(s) = ∆(s)−1(f ∗ g)(s−1)

= ∆(s)−1
∫
f(s−1t)g(t−1)dt

=

∫
g∗(t)f ∗(t−1s)dt

= (g∗ ∗ f ∗)(s).

This completes the proof. 2

If G is discrete the characteristic functions δs ∈ Cc(G) and {δs : s ∈ G} spans Cc(G).

Moreover in the discrete case, the multiplication and the involution of basis elements are

as follows:

δs ∗ δt = δst

δ∗s = δs−1 .

If G is not discrete the characteristic functions are no longer elements of Cc(G). The

trick to overcome this is to use approximate identities instead.

Let {Un}∞n=1 be a decreasing sequence of open sets containing the identity element

e. We assume that Un is symmetric around e, i.e. U−1n = Un. Suppose that {Un}∞n=1 is

a basis at e, i.e. given an open set U containing e, there exists N such that UN ⊂ U .

Note that such a sequence of open sets can always be constructed. For, G is metrisable

and we can let Vn be the open ball (with respect to a metric inducing the topology of
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G) of radius 1
n

centered at e. Then set Un = Vn ∩ V −1n . For each n, choose φn ∈ Cc(G)

such that supp(φn) ⊂ Un, φ∗n = φn, φn ≥ 0 and
∫
φn(s)ds = 1. Such a sequence {φn}∞n=1

is called an approximate identity of Cc(G). The justification of the name approximate

identity is due to the following proposition.

Proposition 5.2 Keep the foregoing notation. For f ∈ Cc(G), the sequence {φn ∗f}∞n=1

and the sequence {f ∗ φn}∞n=1 converges to f in the inductive limit topology.

Proof. Since φn is self-adjoint, it suffices to prove that φn ∗ f → f in the inductive limit

topology. LetK be a compact neighbourhood at e. For large n, Un ⊂ K and consequently

supp(φn ∗ f) ⊂ supp(φn)supp(f) ⊂ Ksupp(f). Thus {φn ∗ f}∞n=1 is supported inside a

common compact set.

Let ε > 0 be given. The map G 3 t → Ltf ∈ Cc(G) is continuous when Cc(G)

is given the inductive limit topology. Thus there exists N large such that for t ∈ UN ,

||Ltf − f ||∞ ≤ ε. For s ∈ G and n ≥ N , calculate as follows to observe that

|φn ∗ f(s)− f(s)| =
∣∣∣ ∫ φn(t)f(t−1s)dt− f(s)

∣∣∣
=
∣∣∣ ∫

Un

φn(t)f(t−1s)dt−
∫
φn(t)f(s)dt

∣∣∣
=
∣∣∣ ∫

Un

φn(t)(f(t−1s)− f(s))dt
∣∣∣

≤
∫
Un

φn(t)||Ltf − f ||∞dt

≤ ε.

Hence the sequence {φn ∗ f}∞n=1 converges to f in the inductive limit topology. 2

Exercise 5.2 Suppose G is not discrete. Prove that Cc(G) has no multiplicative identity.

Hint: Use the fact that Cc(G) has an approximate identity.

For f ∈ Cc(G), define ||f ||1 :=
∫
|f(s)|ds. It is clear that ||f ∗||1 = ||f ||1 for f ∈ Cc(G).

Let f, g ∈ Cc(G) be given. Calculate as follows to observe that∫
|f ∗ g(s)|ds ≤

∫ ∫
|f(t)||g(t−1s)|dtds

=

∫
|f(t)|

( ∫
|g(t−1s)|ds

)
dt

=

∫
|f(t)|||g||1dt( Haar measure is left invariant)

= ||f ||1||g||1.
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Hence ||f ∗ g|| ≤ ||f ||1||g||1 for f, g ∈ Cc(G). In other words, (Cc(G), || ||1) is a normed

∗-algebra.

Definition 5.3 Let A be a ∗-algebra and || || be a norm on A. We say that the pair

(A, || ||) is a normed ∗-algebra if for a, b ∈ A,

||ab|| ≤ ||a||||b||
||a∗|| = ||a||.

Let (A, || ||1) be a normed ∗-algebra. The enveloping C∗-algebra of A is defined in the

same fashion as in Section 2, the only difference here is that to define the universal C∗-

seminorm, we consider only representations which are bounded w.r.t. || ||1. Let π : A →
B(H) be a representation. We say that π is bounded w.r.t. || ||1 if ||π(x)|| ≤ ||x||1 for

every x ∈ A.

Thus, define a C∗-seminorm || || on A as

||x|| := sup{||π(x)|| : π is a bounded ∗-representation}

for x ∈ A. Suppose that ||x|| < ∞ for every x ∈ A. Let I := {x ∈ A : ||x|| = 0}.
Then || || descends to a genuine C∗-norm on A/I and the completion of A/I is called

the enveloping C∗-algebra of A, denoted C∗(A). Note that ∗-representations of C∗(A)

are in one-one correspondence with bounded representations of A.

Definition 5.4 The full group C∗-algebra, denoted C∗(G), is defined as the enveloping

C∗-algebra of Cc(G).

Of course, we need to show that C∗(G) exists and is non-zero. This requires us to

study bounded ∗-representations of Cc(G) in more detail. Just like in the discrete set-

ting, first we show that non-degenerate bounded ∗-representations of Cc(G) are in 1-1

correspondence with strongly continuous unitary representations of G.

Definition 5.5 Let H be a Hilbert space and U : G→ B(H) be a map. We denote the

image of an element s under U by Us. We say that U is a strongly continuous unitary

representation if

(1) for s, t ∈ G, UsUt = Ust,

(2) for s ∈ G, Us is a unitary, and
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(3) for ξ ∈ H, the map G 3 s → Usξ ∈ H is continuous where H is given the norm

topology.

Since we will not consider unitary representations that are not strongly continuous, we

drop the modifying term ”strongly continuous”. Note that to check (3), it suffices to

check for vectors ξ in a total set.

Exercise 5.3 Show that Condtion (3) can be replaced by the following condition.

(3)
′

for ξ, η ∈ H, the map G 3 s→ 〈Usξ|η〉 ∈ C is continuous.

Example 5.6 Consider the Hilbert space L2(G, µ) where µ is a Haar measure. For

s ∈ G, let λs be the unitary on L2(G) defined by the equation

λs(f)(t) = f(s−1t).

Then λ := {λs}s∈G is a unitary representation of G and is called the left regular repre-

sentation of G. The only non-trivial thing to verify is the continuity condition.

Fix f ∈ Cc(G). Note that the map G 3 s → λs(f) ∈ L2(G) is the composite of the

map G 3 s → λs(f) ∈ Cc(G) and the inclusion Cc(G) → L2(G). But both these maps

are continuous. Hence G 3 s→ λs(f) ∈ L2(G) is continuous.

For s ∈ G, let ρs be the unitary on L2(G) defined by the equation

ρs(f)(t) = f(ts).

Then ρ := {ρs}s∈G is a unitary representation of G and is called the right regular repre-

sentation of G. Note that λ(G) and ρ(G) commutes with each other. It is a remarkable

fact that the commutant of λ(G) is the von Neumann algebra generated by ρ(G). Simi-

larly, ρ(G)
′

is the von Neumann algebra generated by λ(G).

To explain the correspondence between unitary representations of G and non-degenerate

bounded ∗-representations of Cc(G), we need to recall how to integrate operator valued

functions.

Operator valued integration: Let (X,B) be a measurable space and H be a

separable Hilbert space. A function f : X → B(H) is said to be weakly measurable if

for ξ, η ∈ H, the map X 3 x→ 〈f(x)ξ|η〉 ∈ C is measurable.

Lemma 5.7 Keep the foregoing notation. Let f : X → B(H) be weakly measurable.

Then the map X 3 x→ ||f(x)|| ∈ C is measurable.
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Proof. Let D be a countable dense subset of the unit ball of H. Note that for x ∈ X,

||f(x)|| = sup
ξ,η∈D

|〈f(x)ξ|η〉|.

Now the proof is complete. 2

Let µ be a measure on (X,B). A weakly measurable map f : X → B(H) is said to

be integrable w.r.t. µ if
∫
||f(x)||dµ(x)|| <∞.

Proposition 5.8 Let µ be a measure on (X,B) and f : X → B(H) be integrable w.r.t.

µ. Then there exists a unique bounded linear operator, denoted
∫
f(x)dµ(x), such that

for ξ, η ∈ H, 〈( ∫
f(x)dµ(x)

)
ξ
∣∣η〉 =

∫
〈f(x)ξ|η〉dµ(x)

for ξ, η ∈ H. Also,

||
∫
f(x)dµ(x)|| ≤

∫
||f(x)||dµ(x).

Proof. Let B : H × H → C be defined by B(ξ, η) =
∫
〈f(x)ξ|η〉dµ(x). Then B is a

bounded sesquilinear form on H. Thus there exists a unique bounded linear operator,

denote it by
∫
f(x)dµ(x), such that〈( ∫

f(x)dµ(x)
)
ξ
∣∣η〉 =

∫
〈f(x)ξ|η〉dµ(x)

for ξ, η ∈ H. The estimate is obvious. Hence the proof. 2

Note the following properties about operator valued integration.

(1) Suppose f, g : X → B(H) are integrable. Then αf + g is integrable for every α

and in that case∫
(αf(x) + g(x))dµ(x) = α

∫
f(x)dµ(x) +

∫
g(x)dµ(x).

In short, the integral is linear.

(2) Suppose f : X → B(H) is integrable and T ∈ B(H). Then the maps x → Tf(x)

and x → f(x)T are integrable. Also , we have the equality
∫
Tf(x)dµ(x) =

T
( ∫

f(x)dµ(x)
)

and
( ∫

f(x)dµ(x)
)
T =

∫
f(x)Tdµ(x).

(3) Suppose f : X → B(H) is integrable. Then X 3 x → f(x)∗ ∈ B(H) is integrable

and ∫
f(x)∗dµ(x) =

( ∫
f(x)dµ(x)

)∗
.
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Exercise 5.4 Formulate a version of the dominated convergence theorem and prove it.

Let us now return to the study of non-degenerate bounded ∗-representations of Cc(G).

Let U : G→ B(H) be a unitary representation of G on H. For f ∈ Cc(G), let πU(f) be

the bounded operator given by the equation

πU(f) =

∫
f(s)Usds.

Note that πU(f) exists since s→ f(s)Us is weakly continuous and s→ ||f(s)Us|| = |f(s)|
is integrable. Clearly, for f ∈ Cc(G), ||πU(f)|| ≤ ||f ||1.

Proposition 5.9 Keep the foregoing notation. The map πU : Cc(G) → B(H) is a

bounded non-degenerate ∗-representation of Cc(G). The representation πU is continuous

w.r.t. the inductive limit topology.

Proof. First let us check that πU preserves the adjoints. Let f ∈ Cc(G) and ξ, η ∈ H be

given. Then

〈πU(f ∗)ξ|η〉 =

∫
f ∗(s)〈Usξ|η〉ds

=

∫
∆(s−1)f(s−1)〈Usξ|η〉ds

=

∫
∆(s−1)〈ξ|f(s−1)Us−1η〉ds

=

∫
〈ξ|f(s)Usη〉ds

=

∫
f(s)〈Usη|ξ〉ds

= 〈πU(f)η|ξ〉
= 〈πU(f)∗ξ|η〉.

Hence πU(f ∗) = πU(f)∗.
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Let f, g ∈ Cc(G) and ξ, η ∈ H be given. Calculate as follows to observe that

〈πU(f ∗ g)ξ|η〉 =

∫
f ∗ g(s)〈Usξ|η〉ds

=

∫ (∫
f(t)g(t−1s)dt

)
〈Usξ|η〉ds

=

∫
f(t)

(∫
g(t−1s)〈Usξ|η〉ds

)
dt

=

∫
f(t)

(∫
g(s)〈Utsξ|η〉ds

)
dt

=

∫
f(t)

(∫
g(s)〈Usξ|U∗t η〉ds

)
dt

=

∫
f(t)〈πU(g)ξ|U∗t η〉dt

=

∫
f(t)〈UtπU(g)ξ|η〉dt

= 〈πU(f)πU(g)ξ|η〉.

Consequently, we have πU(f∗g) = πU(f)πU(g). This proves that πU is a ∗-representation.

We have already noted that πU is bounded. The continuity w.r.t. the inductive limit

topology follows as a consequence.

Let {φn}∞n=1 be the approximate identity constructed in Proposition 5.2. Keep the

notation used in Prop. 5.2. We claim that πU(φn) converges strongly to Id. Let ξ ∈ H
be given. Suppose ε > 0 is given. Choose N large such that for s ∈ UN , ||Usξ − ξ|| ≤ ε.

For η ∈ H and n ≥ N , calculate as follows to observe that

|〈πU(φn)ξ − ξ|η〉 =
∣∣∣ ∫ φn(s)〈Usξ|η〉ds−

∫
φn(s)〈ξ|η〉ds

∣∣∣
≤
∣∣∣ ∫ φn(s)〈Usξ − ξ|η〉ds

∣∣∣
≤
∫
φn(s)||Usξ − ξ||||η||ds

≤ ε||η||.

Hence for n ≥ N , ||πU(φn)ξ − ξ|| ≤ ε. This proves that πU(φn)ξ → ξ for every ξ ∈ H.

This proves our claim. Thus πU is non-degenerate. This completes the proof. 2

The representation πU constructed in the previous proposition is called the integrated

form of U .

Exercise 5.5 Keep the notation of the previous proposition. Prove that
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(1) for s ∈ G and f ∈ Cc(G), UsπU(f) = πU(Lsf), and

(2) for s ∈ G, πU(Lsφn)→ Us in the strong operator topology.

Thus, if U and V are two unitary representations of G on the same Hilbert space then

πU = πV if and only if U = V .

Next we show that every non-degenerate bounded ∗-representation of Cc(G) is of the

form πU for a unique unitary representation U of G. We need to invoke vector valued

integration at a crucial point and it is worthwhile to digress a bit into vector valued

integration. We start by recalling the Krein-Smulian theorem whose proof can be found

for instance in [5].

Remark 5.10 (Krein-Smulian) Let E be a separable Banach space and φ : E∗ → C
be a linear functional. Then φ is weak ∗-continuous if and only if φ is weak ∗-sequentially

continuous. We refer the reader to Corollary 12.8 of [5].

Vector valued integration: Suppose E is a separable Banach space and let (X,B)

be a measurable space.

(1) A map f : X → E is said to be weakly measurable if φ ◦ f is measurable for every

φ ∈ E∗.

(2) Suppose f : X → E is weakly measurable. Then the map X 3 x→ ||f(x)|| ∈ C is

measurable. This is because since E is separable, the unit ball of E∗ w.r.t. to the

weak ∗-topology is a compact metrizable space.

(3) Let µ be a measure on (X,B) and f : X → E be a weakly measurable map. We say

that f is integrable w.r.t µ if x → ||f(x)|| is integrable. Suppose f is integrable.

Define F : E∗ → C by

F (φ) =

∫
φ(f(x))dµ(x).

An application of the Krein-Smulian theorem implies that F is weak ∗-continuous.

Thus there exists a unique element, denoted
∫
f(x)dµ(x) ∈ E, such that

φ(

∫
f(x)dµ(x)) =

∫
φ(f(x))dµ(x).

We call
∫
f(x)dµ(x), the integral of f w.r.t the measure µ. The

∫
satisfies the

usual linearilty properties and the dominated convergence theorem.
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Now let µ be a Haar measure on G. Let f, g ∈ Cc(G) be given. Consider g as an

element of L1(G). Note that the map G 3 s → Ls(g) ∈ L1(G) is continuous when

L1(G) is given the norm topology. Consequently, the vector valued integral, in the sense

explained above,
∫
f(s)Ls(g)ds exists.

Lemma 5.11 With the foregoing notation, we have f ∗ g =
∫
f(s)Ls(g)ds in L1(G).

Proof. For φ ∈ L∞(G), let ωφ : L1(G) → C be defined by ωφ(f) =
∫
f(s)φ(s)ds. The

map φ→ ωφ identifies L∞(G) with the dual of L1(G). It suffices to show that for every

φ ∈ L∞(G), ωφ(f ∗ g) = ωφ

( ∫
f(s)Ls(g)ds

)
. Fix φ ∈ L∞(G). Calculate as follows to

observe that

ωφ(f ∗ g) =

∫
f ∗ g(t)φ(t)dt

=

∫ (∫
f(s)g(s−1t)ds)φ(t)dt

=

∫
f(s)

(∫
φ(t)g(s−1t)dt

)
ds

=

∫
f(s)

(∫
φ(t)Ls(g)(t)dt

)
ds

=

∫
f(s)ωφ(Ls(g))ds

= ωφ

(∫
f(s)Ls(g)ds

)
.

Hence the proof. 2

Proposition 5.12 Let π : Cc(G)→ B(H) be a non-degenerate, bounded ∗-representation.

Then there exists a unique unitary representation U : G→ B(H) such that π = πU .

Proof. Uniqueness follows from Exercise 5.5. Note that {π(f)ξ : f ∈ Cc(G), ξ ∈ H} is

total in H. Let s ∈ G be given. Note that for f, g ∈ Cc(G), (Lsf)∗ ∗ Lsg = f ∗ ∗ g. This

has the consequence that for ξ, η ∈ H and f, g ∈ Cc(G),

〈π(Lsf)ξ|π(Lsg)η〉 = 〈π(f)ξ|π(g)η〉.

Hence there exists a unique unitary operator, denote it by Us, such that Usπ(f)ξ =

π(Lsf)ξ for f ∈ Cc(G) and ξ ∈ H. Evaluating on the total set {π(f)ξ : f ∈ Cc(G), ξ ∈
H}, it is straightforward to verify that UsUt = Ust for s, t ∈ G. To check that {Us}s∈G
is strongly continuous, it is sufficient to verify that for f ∈ Cc(G) and ξ ∈ H, the map
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G 3 s → π(Lsf)ξ ∈ H is continuous. But the last assertion follows as π is continuous

with respect to the inductive limit topology (for the map Cc(G) 3 f → f ∈ L1(G) is

continuous).

We claim that π = πU . Since {π(g)ξ : g ∈ Cc(G), ξ ∈ H} is total in H, It suffices to

show that for f, g ∈ Cc(G) and ξ, η ∈ H,

〈πU(f)π(g)ξ|η〉 = 〈π(f)π(g)ξ|η〉.

Let f, g ∈ Cc(G) and ξ, η ∈ H be given. Denote the linear extension of π to L1(G) by π̃.

Define ω : L1(G)→ C by ω(h) = 〈π̃(h)ξ|η〉. Calculate as follows to observe that

〈π(f)π(g)ξ|η〉 = 〈π(f ∗ g)ξ|η〉
= ω(f ∗ g)

=

∫
f(s)ω(Lsg)ds (by Lemma 5.11)

=

∫
f(s)〈π(Lsg)ξ|η〉ds

=

∫
f(s)〈Usπ(g)ξ|η〉ds

= 〈
(∫

f(s)Usds)π(g)ξ|η〉

= 〈πU(f)π(g)ξ|η〉.

This completes the proof. 2

Next we show that the universal C∗-norm is indeed a norm by exhibiting a faithful

representation of Cc(G). Let λ := {λs}s∈G be the left regular representation of G on

L2(G). We denote the integrated form of the left regular representation by λ itself. Thus

for f ∈ Cc(G), λ(f) =
∫
f(s)λsds. Let f, g, h ∈ Cc(G) be given. Calculate as follows to

observe that

〈λ(f)g|h〉 =

∫
f(s)〈λs(g)|h〉ds

=

∫
f(s)

(∫
g(s−1t)h(t)dt

)
ds

=

∫
h(t)

(∫
f(s)g(s−1t)ds

)
dt

=

∫
(f ∗ g)(t)h(t)dt

= 〈f ∗ g|h〉.

Hence for f, g ∈ Cc(G), λ(f)g = f ∗ g.
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Lemma 5.13 The representation λ is faithful.

Proof. Let f ∈ Cc(G) be such that λ(f) = 0. Consider an approximate identity {φn}∞n=1.

Considered as an element of L2(G), f ∗ φn = λ(f)φn = 0. Hence f ∗ φn = 0 in Cc(G).

But f ∗ φn → f in the inductive limit topology. Consequently, it follows that f = 0.

Hence λ is faithful. 2

An immediate consequence of the previous lemma is that the universal C∗-seminorm

on Cc(G) given by

||f || := sup{||πU(f)|| : U is a unitary representation of G}

for f ∈ Cc(G) is indeed a norm.

Definition 5.14 The completion of Cc(G) with respect to the universal C∗-norm is called

the full group C∗-algebra and is denoted C∗(G). For f ∈ Cc(G), let

||f ||red := ||λ(f)||.

Then || ||red is a C∗-norm on Cc(G) and its completion is called the reduced C∗-algebra of

G and is denoted C∗red(G). Note that C∗red(G) is the C∗-subalgebra of B(L2(G)) generated

by {λ(f) : f ∈ Cc(G)}. The map Cc(G) 3 f → λ(f) ∈ C∗red(G) extends to a surjective

homomorphism from C∗(G) onto C∗red(G).

Note that non-degenerate ∗-representations of C∗(G) are in one-one correspondence

with bounded non-degenerate ∗-representations of Cc(G), which in turn is in one-one

correspondence with unitary representations of G. In other words, the map

U → πU

identifies strongly continuous unitary representations of G and non-degenerate repre-

sentations of C∗(G). Moreover, this map preserves unitary equivalence, direct sum,

irreducibility, etc..... Thus, in principle, studying the representation theory of a locally

compact group is equivalent to studying the representation theory of C∗(G). We prove

Raikov’s theorem, which asserts that every locally compact group has sufficiently many

irreducible representations, as an application of this principle.

We need the following which is the corollary to Theorem 1.7.2 of [1].

Proposition 5.15 Let A be a C∗-algebra and a ∈ A be non-zero. Then there exists an

irreducible representation π such that π(a) 6= 0. In other words, irreducible representa-

tions of A separates points of A.
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Theorem 5.16 (Raikov’s theorem) Let G be a locally compact second countable Haus-

dorff topological group. For every s ∈ G, with s 6= e, there exists an irreducible unitary

representation U of G such that Us 6= Id.

Proof. Let s ∈ G be such that s 6= e. Suppose, on the contrary, assume that for

every irreducible unitary representation U of G, Us = Id. Choose f ∈ Cc(G) such that

Lsf 6= f . Then there exists an irreducible representation π of C∗(G), say on the Hilbert

space H, such that π(Lsf) 6= π(f). Let U be the unitary representation of G such that

π = πU . Then U is irreducible. The equality UsπU(f) = πU(Lsf) 6= πU(f) which implies

that Us 6= I. Hence the proof. 2

Remark 5.17 As another application, we could derive that a finite group has only

finitely many irreducible unitary representations, up to unitary equivalence. Suppose

G is finite. Then C∗(G) is finite dimensional. Hence C∗(G) ' Mm1(C) ⊕Mm2(C) ⊕
· · · ⊕Mmr(C). Consequently, C∗(G) has exactly r irreducible representations.

We end this section by identifying the C∗-algebra of an abelian group. For the rest

of this section, let G be a locally compact, second countable, topological group which

we assume is abelian. Note that C∗(G) is commutative. First, we identify the spectrum

of C∗(G). Let χ : G → T be a continuous map. We say that χ is a character of G if

χ(st) = χ(s)χ(t) for every s, t ∈ G. Denote the set of characters by Ĝ. For χ1, χ2 ∈ Ĝ,

define χ1.χ2 : G→ T by the formula

χ1.χ2(s) = χ1(s)χ2(s)

for s ∈ G. Then χ1.χ2 ∈ Ĝ. With this multiplication Ĝ is an abelian group. We endow

Ĝ with the topology of uniform convergence on compact sets. The convergence of nets in

Ĝ is as follows. Let (χi) be a net in Ĝ and let χ ∈ Ĝ be given. Then χi → χ if and only

if for every compact set K ⊂ G, the net (χi) converges uniformly to χ on K. Endowed

with the topology of convergence on compact sets, Ĝ is a topological group.

Set A := C∗(G). Let χ ∈ Ĝ be given. Then χ is a 1-dimensional unitary representa-

tion of G. Thus, there exists a ∗-homomorphism denoted ωχ : A→ C such that

ωχ(f) =

∫
f(s)χ(s)ds

for f ∈ Cc(G).

Theorem 5.18 With the foregoing notation, the map Ĝ 3 χ→ ωχ ∈ Â is a homeomor-

phism. As a consequence, it follows that C∗(G) ' C0(Ĝ).
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Exercise 5.6 Let E be a Banach space and {φi} be a bounded net in E∗. Suppose

φ ∈ E∗ and φi → φ in the weak ∗-topology. Let K be a compact set in E. Then φi → φ

uniformly on K.

Proof of Theorem 5.18. First we prove that χ → ωχ is continuous. Suppose χi is a

net in Ĝ and χi → χ ∈ Ĝ. Since {ωχi} is uniformly bounded, it suffices to prove that

for f ∈ Cc(G), ωχi(f) → ωχ(f). Let f ∈ Cc(G) be given. Denote the support of f by

K. Let ε > 0 be given. Choose i0 such that for i ≥ i0, |χi(x) − χ(x)| ≤ ε for x ∈ K.

Calculate as follows to observe that for i ≥ i0,

|ωχi(f)− ωχ(f)| = |
∫

(f(s)χi(s)− f(s)χ(s))ds

≤
∫
K

|f(s)||χi(s)− χ(s)|ds

≤ ε||f ||1.

This proves that ωχi → ωχ. Hence the map χ→ ωχ is continuous.

Let ω be a character of A. View ω as a 1-dimensional representation on the Hilbert

space C. Then there exists a unitary representation χ : G → U(C) ' T such that for

f ∈ Cc(G), ω(f) =
∫
f(s)χ(s)ds = ωχ(f). Since Cc(G) is dense in C∗(G), it follows

that ω = ωχ. This proves that χ→ ωχ is onto. The injectivity of the map follows from

Exercise 5.5.

Consider a net (ωχi) → ωχ. Then ωχiχ−1 → ω1. It suffices to prove that χiχ
−1 → 1.

Thus, with no loss of generality, we can assume that χ is the trivial character. Denote

ωχ by ω0. Let K be a compact subset of G and let ε > 0 be given. Choose f ∈ Cc(G)

such that f ≥ 0 and
∫
f(s)ds = 1. Note that f ∗ χ(s) = 1 for every s ∈ G.

Note that the inclusion Cc(G) → A is continuous. Hence the set {Ls−1f : s ∈ K} is

a compact subset of A. By Exercise 5.6, there exists i0 such that for i ≥ i0 and s ∈ K,

|f ∗ χi(s)− χ(s)| = |f ∗ χi(s)− f ∗ χ(s)| = |ωχi(Ls−1f)− ω0(Ls−1f)| ≤ ε.

Choose i1 such that for i ≥ i1, |ωχi(f) − ω0(f)| ≤ ε. Choose i2 ≥ i0, i1. Let i ≥ i2 and
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s ∈ G be given. Calculate as follows to observe that

|f ∗ χi(s)− χi(s)| = |
∫
f(t)χi(t

−1s)ds− χi(s)
∫
f(t)dt|

≤ |
∫
χi(s)(χi(t)− 1)f(t)dt|

≤ |χi(s)|
∣∣∣ ∫ f(t)(χi(t)− 1)dt

∣∣∣
≤ |ωχi(f)− ω0(f)|
≤ ε.

Combining the above two inequalities, we see that for i ≥ i2 and s ∈ K, |χi(s)−χ(s)| ≤
2ε. This proves that χi → χ. Hence the map Ĝ 3 χ → ωχ ∈ Â is a homeomorphism.

This completes the proof. 2

We end this section by discussing Plancherel’s theorem for abelian groups. Let G

be a locally compact second countable Hausdorff topological group which we assume is

abelian. For f ∈ L1(G), let f̂ : Ĝ→ C be defined by

f̂(χ) =

∫
f(s)χ(s)ds

for χ ∈ Ĝ. The function f̂ is called the Fourier transform of f . Note that for f ∈ Cc(G),

f̂(χ) = ωχ(f). Hence f̂ ∈ C0(Ĝ) for f ∈ Cc(G). Using the fact that Cc(G) is dense in

L1(G), it follows at once that f̂ ∈ C0(Ĝ) for f ∈ L1(G).

Theorem 5.19 (Plancherel’s theorem) (1) For f ∈ L1(G) ∩ L2(G), f̂ ∈ L2(Ĝ).

(2) There exists a unique Haar measure µ on Ĝ such that the map

L1(G) ∩ L2(G) 3 f → f̂ ∈ L2(Ĝ)

extends to a unitary map from L2(G) onto L2(Ĝ). The unitary f → f̂ is usually

denoted F .

Let σ : C∗(G)→ C0(Ĝ) be the ∗-homomorphism such that for f ∈ Cc(G) and χ ∈ Ĝ,

σ(f)(χ) = ωχ(f) =

∫
f(s)χ(s)ds.

Theorem 5.18 and the Gelfand-Naimark theorem asserts that σ is well-defined and is

a ∗-isomorphism. Let µ be a Haar measure on Ĝ as in Plancherel’s theorem. Let
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M : C0(Ĝ) → B(L2(Ĝ)) be the multiplication representation, i.e. for f ∈ C0(Ĝ) the

operator M(f) is given by

M(f)ξ(χ) = f(χ)ξ(χ)

for ξ ∈ L2(Ĝ). Then M is a faithful representation. Let λ : C∗(G) → B(L2(G)) be the

left regular representation. For f ∈ Cc(G) and ξ ∈ Cc(G), calculate as follows to observe

that

Fλ(f)ξ(χ) = f̂ ∗ ξ(χ)

=

∫
(f ∗ ξ)(s)χ(s)ds

=

∫
(

∫
f(t)ξ(t−1s)dt)χ(s)ds

=

∫
f(t)χ(t)

(∫
ξ(t−1s)χ(t−1s)ds

)
dt

=

∫
f(t)χ(t)

(∫
ξ(s)χ(s)ds

)
dt

=

∫
f(t)χ(t)ξ̂(χ)dt

= ωχ(f)Fξ(χ)

= σ(f)(χ)Fξ(χ).

Hence Fλ(f) = M(σ(f))F for f ∈ Cc(G). Hence Fλ(.)F∗ = M ◦ σ. But M ◦ σ is a

faithful representation of C∗(G). Thus we obtain the following corollary.

Corollary 5.20 The left regular representation λ : C∗(G) → C∗red(G) is an isomor-

phism.

We finish this section by stating the Pontraygin duality theorem. We refer the reader

to Chapter 4 of [9] for a proof. Let G be a locally compact abelian group. Denote the

dual group by Ĝ. For s ∈ G, let ŝ : Ĝ→ T be defined by

ŝ(χ) = χ(s)

for χ ∈ Ĝ. Then ŝ ∈ ̂̂G. Moreover the map G 3 s → ŝ ∈ ̂̂G is continuous. Raikov’s

theorem implies that the map s→ ŝ is indeed one-one.

Theorem 5.21 (Pontraygin duality) The map Ĝ 3 s→ ŝ ∈ ̂̂G is a homeomorphism.

Exercise 5.7 In this exercise, we identify the duals of a few concrete abelian groups.
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(1) For ξ ∈ R, let χξ : R→ T be defined by χξ(x) = e2πixξ. Prove that R 3 ξ → χξ ∈ R̂
is a homeomorphism of topological groups.

(2) For z ∈ T, let χz : Z→ T be defined by χz(n) = zn. Show that T 3 z → χz ∈ Ẑ is

a homeomorphism of topological groups.

(3) For m ∈ Z, let χm : T→ T be defined by χm(z) = zm. Show that Z 3 m→ χm ∈ T̂
is a homeomorphism of topological groups.

(4) Identify the duals of Rd, Zd and Td.
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6 Crossed products

In this section, we discuss the notion of crossed products of C∗-algebras associated with

actions of topological groups. We will omit the proofs as we have the discussed the case

of group C∗-algebras and discrete crossed products in complete detail.

Let A be a C∗-algebra and G be a locally compact second countable Hausdorff topo-

logical group. By an action of G on A, we mean a map α : G → Aut(A), the image of

an element s under α is denoted by αs, such that

(1) for s ∈ G, αs : A→ A is a ∗-automorphism,

(2) for s, t ∈ G, αs ◦ αt = αst, and

(3) for a ∈ A, the map G 3 s → αs(a) ∈ A is continuous when A is given the norm

topology.

The triple (A,G, α) is called a C∗-dynamical system.

Exercise 6.1 Let (A,G, α) be a C∗-dynamical system. Prove that the map

G× A 3 (s, a)→ αs(a) ∈ A

is continuous.

Example 6.1 Let X be a left G-space where X is a locally compact second countable

Hausdorff topological space. Define for s ∈ G, αs : C0(X)→ C0(X) by

αs(f)(x) = f(s−1x)

for f ∈ C0(X). Then (C0(X), G, α) is a C∗-dynamical system.

Let (A,G, α) be a C∗-dynamical system. Let ds be a left Haar measure on G and ∆ be

the modular function of G. Consider the vector space Cc(G,A), i.e.

Cc(G,A) := {f : G→ A : f is continuous and compactly supported}.

Define the convolution and the involution on Cc(G,A) as follows : for f, g ∈ Cc(G,A),

f ∗ g(s) =

∫
f(t)αt(g(t−1s))dt

f ∗(s) = ∆(s−1)αs(f(s−1)∗).
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Then Cc(G,A) becomes a ∗-algebra. For f ∈ Cc(G,A), let

||f ||1 :=

∫
||f(s)||ds.

With the norm defined above Cc(G,A) is normed ∗-algebra. The crossed product AoαG

is defined as the enveloping C∗-algebra of Cc(G,A).

Definition 6.2 Let (A,G, α) be a C∗-dynamical system. By a covariant representation

of (A,G, α) on a Hilbert space H, we mean a pair (π, U) such that

(1) π is a ∗-representation of A,

(2) U := {Us}s∈G is a strongly continuous representation of G, and

(3) for s ∈ G and a ∈ A, the covariance condition Usπ(a)U∗s = π(αs(a)) is satisfied.

We say that (π, U) is non-degenerate if π is non-degenerate.

The following theorem characterises bounded ∗-representations of Cc(G,A).

Theorem 6.3 Let (A,G, α) be a C∗-dynamical system. Let (π, U) be a non-degenerate

covariant representation of (A,G, α) on a Hilbert space H. For f ∈ Cc(G,A), let

(π o U)(f) :=

∫
π(f(s))Usds.

Then π o U is a non-degenerate bounded ∗-representation of Cc(G,A).

Suppose π̃ is a bounded non-degenerate ∗-representation of Cc(G,A) on a Hilbert

space H. Then there exists a unique covariant representation (π, U) of (A,G, α) on H
which is non-degenerate such that for f ∈ Cc(G,A),

π̃(f) = (π o U)(f) =

∫
π(f(s))Usds.

Remark 6.4 The map

(π, U)→ π o U

establishes a bijective correspondence between non-degenerate covariant representations

of (A,G, α) and non-degenerate bounded ∗-representations of Cc(G,A). Moreover the

above correspondence preserves direct sum, irreducibility etc.....
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For f ∈ Cc(G,A), let

||f || := sup{||(π o U)(f)|| : (π, U)

is a non-degenerate covariant representation of (A,G, α)}.

We will show that || || is indeed a genuine C∗-norm on Cc(G,A). The completion of

Cc(G,A) with respect to this universal norm is called the full crossed product and is

denoted AoG.

Next we exhibit a concrete covariant representation of (A,G, α). Let π be a faithful

non-degenerate ∗-representation of A on a Hilbert space H. Set H̃ := L2(G,H). Recall

that H̃ consists of weakly measurable square integrable H-valued functions. The inner

product on H̃ is given by

〈ξ|η〉 :=

∫
〈ξ(s)|η(s)〉ds

for ξ, η ∈ H̃. The proof that H̃ is a Hilbert space is similar to the case when H = C.

For s ∈ G and a ∈ A, let λs and π̃(a) be the bounded operators on H̃ defined by

λsξ(t) = ξ(s−1t)

π̃(a)ξ(t) = π(α−1t (a))ξ(t)

Then (π̃, λ) is a covariant representation of (A,G, α).

Exercise 6.2 Show that (π̃, λ) is non-degenerate.

Proposition 6.5 The representation π̃ o λ is a faithful representation of Cc(G,A).

Proof. Let f ∈ Cc(G,A) be such that (π̃o λ)(f) = 0. For ξ, η ∈ Cc(G) and u, v ∈ H, let

ξ0(s) = ξ(s)u and η0(s) = η(s)v. Note that ξ0, η0 ∈ H̃. Set K(s, t) = 〈π(α−1t (f(s)))u|v〉.
Calculate as follows to observe that

0 = 〈(π̃ o λ)(f)ξ0|η0〉

=

∫
〈π̃(f(s))λsξ0|η0〉ds

=

∫ (∫
〈(π̃(f(s))λsξ0)(t)|η0(t)〉dt

)
ds

=

∫ (∫
〈π(α−1t (f(s)))ξ(s−1t)u|η(t)v〉dt

)
ds

=

∫
η(t)

(
ξ(s−1t)K(s, t)ds

)
dt.
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Since η is arbitrary and t→
∫
ξ(s−1t)K(s, t)ds is continuous, it follows that for every t,∫

ξ(s−1t)K(s, t)ds = 0.

The arbitrariness of ξ implies K(s, t) = 0 for every s, t. Hence K(s, e) = 0. This implies

〈π(f(s))u|v〉 = 0 for every s, u, v ∈ H. But π is faithful and hence f(s) = 0 for every

s ∈ G. This implies that f = 0 and the proof is complete. 2

The above proposition allows us to define the reduced C∗-norm on Cc(G,A). For

f ∈ Cc(G,A), let

||f ||red = ||(π̃ o λ)(f)||.

The faithfulness of π̃ o λ implies that || ||red is a C∗-norm on Cc(G,A). Moreover for

f ∈ Cc(G,A), the reduced C∗-norm of f is atmost the full C∗-norm of f , i.e.

||f ||red ≤ ||f ||.

The completion of Cc(G,A) with respect to the norm || ||red is called the reduced crossed

product and is denoted AoredG. There is a natural surjection from AoG onto AoredG

which need not be one-one if we don’t assume amenability hypothesis.

A priori it looks as if the reduced C∗-norm depends on the chosen faithful represen-

tation π. But it is in fact independent of the chosen representation. The proof of this

requires us to take a detour into the theory of Hilbert C*-modules which we undertake

next.
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7 Hilbert C∗-modules

Hilbert C∗-modules are analogues of Hilbert spaces where the inner product takes values

in a C∗-algebra. Rieffel in his seminar paper [12] succesfully demonstrated the use of

Hilbert C∗-modules to understand imprimitivity theorems due to Mackey. Kasparov’s

development of KK-theory utilises Hilbert C*-modules in an essential way and is now an

indispensable tool in several areas of operator algebras. For more on K or KK-theory,

see [3] and [10].

Let B be a C∗-algebra. Suppose E is a vector space. We say that E is a right

B-module if E has a right B-action satisfying the usual consistency conditions.

Definition 7.1 Let E be a right B-module. By a B-valued inner product on E, we mean

a map 〈 | 〉 : E × E → B such that

(1) 〈 | 〉 is linear in the second variable and conjugate linear in the first variable,

(2) for b ∈ B and x, y ∈ E, 〈x|yb〉 = 〈x|y〉b,

(3) for x, y ∈ E, 〈x|y〉∗ = 〈y|x〉,

(4) for x ∈ E, 〈x|x〉 is a positive element of B, and

(5) if 〈x|x〉 = 0 then x = 0.

Let E be a right B-module with a B-valued inner product. For x ∈ E, set

||x|| := ||〈x|x〉||
1
2 .

Proposition 7.2 (Cauchy-Schwarz inequality) For x, y ∈ E, ||〈x|y〉|| ≤ ||x||||y||.

Proof. Let ρ be a state on B. The map E ×E 3 (e, f)→ ρ(〈e|f〉) ∈ C is a semi-definite

inner product on E. Applying the usual Cauchy-Schwarz inequality by taking e = x〈x|y〉
and f = y, we see

ρ(〈x|y〉∗〈x|y〉) = ρ(〈e|f〉)
≤ ρ(〈e|e〉)

1
2ρ(〈f |f〉)

1
2

≤ ρ(〈x|y〉∗〈x|x〉〈x|y〉)
1
2ρ(〈y|y〉)

1
2

≤ ||x||||y||ρ(〈x|y〉∗〈x|y〉)
1
2 .
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On simplification, we get ρ(〈x|y〉∗〈x|y〉) ≤ ||x||2||y||2 for every state ρ. But for a positive

element a ∈ B,

||a|| = sup{ρ(a) : ρ is a state of B}.

Therefore ||〈x|y〉||2 = ||〈x|y〉∗〈x|y〉|| ≤ ||x||2||y||2. Taking square roots, we have ||〈x|y〉|| ≤
||x||||y||. The proof is complete. 2

Exercise 7.1 Show that for x ∈ E and b ∈ B, ||xb|| ≤ ||x||||b||.

Once we have the Cauchy-Schwarz inequality, it is proved as in the Hilbert space setting

that || || defines a norm on E.

Definition 7.3 Let E be a right B-module with a B-valued inner product. We say that

E is a Hilbert B-module if E is complete with respect to the norm || || where for x ∈ E,

||x|| = ||〈x|x〉B||
1
2 .

Example 7.4 Hilbert C-modules are just Hilbert spaces. The only difference is that now

the inner product is linear in the second variable as opposed to our usual convention.

Example 7.5 Let B be a C∗-algebra and E := B. The right multiplication by B makes

E into a right B-module. For x, y ∈ E, define 〈x|y〉 = x∗y. Then E is a Hilbert B-

module. The norm on E induced by the inner product coincides with the C∗-norm on

B.

Example 7.6 Let B be a C∗-algebra. Set

HB := {(b1, b2, · · · , ) :
∞∑
n=1

b∗nbn converges in B}.

The C∗-algebra B acts on the right by coordinatewise multiplication. For b := (b1, b2, b3, · · · , )
and c := (c1, c2, c3, · · · , ), set

〈b|c〉 :=
∞∑
n=1

b∗ncn.

Then HB is a Hilbert B-module.

Definition 7.7 Let E1 and E2 be Hilbert B-modules. Suppose T : E1 → E2 is a map.

We say that T is adjointable with adjoint T ∗ if there exists a map (which is necessarily

unique) T ∗ : E2 → E1 such that

〈Tx|y〉 = 〈x|T ∗y〉

for x ∈ E1 and y ∈ E2. The set of adjointable operators from E1 to E2 is denoted by

LB(E1, E2). When E1 = E2 = E, we write LB(E,E) as LB(E).

58



Exercise 7.2 Let T : E1 → E2 be an adjointable operator. Show that

(1) T is C-linear,

(2) the map T is B-linear, and

(3) the map T : E1 → E2 is bounded.

Show that LB(E1, E2) is a norm closed subspace of B(E1, E2).

Proposition 7.8 Let E be a Hilbert B-module. Then LB(E) is a C∗-algebra.

Proof. The only thing that requires proof is that the operator norm satisfies the C∗-

identity. First note that by the Cauchy-Schwarz inequality, we have for x ∈ E,

||x|| = sup{||〈x|y〉|| : ||y|| = 1}.

For T ∈ LB(E), ||T || = sup{||〈Tx|y〉|| : ||x|| = 1 = ||y||}. Thus, it is clear that

||T ∗|| = ||T ||. Since the operator norm is submultiplicative, it follows that for T ∈ LB(E),

||T ∗T || ≤ ||T ||2.
Let T ∈ LB(E) be given. Then

||T ||2 = sup{||Tx||2 : ||x|| = 1}
= sup{||〈Tx|Tx〉|| : ||x|| = 1}
= sup{||〈T ∗Tx|x〉|| : ||x|| = 1}
≤ ||T ∗T || ( by Cauchy-Schwarz inequality).

The proof is now complete. 2

Unlike in the case of Hilbert spaces, it is not true that bounded operators between

Hilbert modules are adjointable. Here is an example.

Example 7.9 Let B := C[0, 1] and J := {f ∈ B : f(0) = 0}. Let E1 = J and

E2 = B. Both E1 and E2 are Hilbert B-modules. Consider the inclusion T : E1 → E2,

i.e. T (x) = x. Then T is not adjointable. Suppose not and let S be the adjoint of T .

Let h := S(1). Then h ∈ J . Calculate as follows to observe that for f ∈ J ,

f = 〈T (f)|1〉
= 〈f |S(1)〉
= fh.

In other words, h is a multiplicative identity of the non-unital C∗-algebra J which is

absurd.
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Remark 7.10 One needs to exercise caution while dealing with Hilbert modules. For

example, it is not true that if F is a submodule of E then E = F ⊕ F⊥. Can you

construct a counterexample ?

In practice, it is essential to complete right B-modules to get genuine Hilbert modules.

The following proposition helps in achieving this.

Proposition 7.11 Let B0 be a dense ∗-subalgebra of a C∗-algebra B. Suppose E0 is a

right B0-module with a B0-valued inner product. E0 is usually called a pre-Hilbert B0-

module. Denote the completion of E0 by E. Then the B0-module structure on E0 lifts

uniquely to make E into a Hilbert B-module.

Proof. The proof is routine and makes essential use of Exercise 7.1. 2

Let us construct the Hilbert module of interest associated to a C∗-dynamical system.

Suppose (A,G, α) is a C∗-dynamical system. Let E0 := Cc(G,A). Then E0 is a vector

space. We make E0 into a right A-module as follows. For f ∈ E0 and a ∈ A, define

(f.a)(s) := f(s)αs(a).

The A-valued inner product on E0 is given by

〈f |g〉A := (f ∗ ∗ g)(e) =

∫
∆(s−1)αs(f(s−1)∗)αs(g(s−1))ds.

Verify that E0 is a pre-Hilbert A-module. We obtain a genuine Hilbert A-module upon

completion which we denote by E.

For a ∈ A, let iA(a) : E0 → E0 be defined by

iA(a)f(s) = af(s).

For s ∈ G, let iG(s) : E0 → E0 be defined by

iG(s)f(t) = αs(f(s−1t)).

Exercise 7.3 For a ∈ A and s ∈ G, show that iA(a) and iG(s) extends to bounded

operator on E. We denote the extensions by the same symbols. Verify that iA(a)∗ = iA(a)

and iG(s)∗ = iG(s−1). Prove that

(1) the map iA : A→ LA(E) is a non-degenerate ∗-representation,

(2) the map s→ iG(s) is a strongly continuous unitary representation of G on E, and
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(3) for s ∈ G and a ∈ A, the covariance condition iG(s)iA(a)iG(s)∗ = iA(αs(a)) is

satisfied.

In short, the pair (iA, iG) is a covariant representation of (A,G, α) on the Hilbert A-

module E.

Just like we can integrate covariant representations on a Hilbert space to obtain a

representation of the crossed product on the same Hilbert space, we could do the same

with Hilbert modules. To do so however requires us to discuss vector valued integration

one more time.

Suppose E is a Hilbert B-module. For x ∈ E, define a seminorm || ||x on LB(E) by

||T ||x = ||Tx|| + ||T ∗x||. The topology on LB(E) induced by the family of seminorms

{|| ||x : x ∈ E} is called the topology of ∗-strong convergence on LB(E). Let (Ti) be

a net in LB(E) and T ∈ LB(E) be given. Then Ti → T in the topology of ∗-strong

convergence if and only if for every x ∈ X, Tix→ Tx and T ∗i x→ T ∗x.

Proposition 7.12 Let X be a locally compact second countable Hausdorff topological

space and µ be a Radon measure on X. Let f : X → LB(E) be continuous when

LB(E) is given the topology of ∗-strong convergence. Suppose that the map X 3 x →
||f(x)|| ∈ [0,∞) is integrable. Then there exists a unique adjointable operator on E

denoted
∫
f(x)dµ(x) such that for u, v ∈ E,

〈
(∫

f(x)dµ(x)
)
u|v〉 =

∫
〈f(x)u|v〉dµ(x).

Proof. Fix u ∈ E. The map X 3 x→ f(x)u ∈ E is continuous and integrable. Define(∫
f(x)dµ(x)

)
u :=

∫
f(x)udµ(x).

The assertion follows from the defining properties of vector valued integration. 2

Remark 7.13 Theorem 6.3 stays true with Hilbert spaces replaced by Hilbert modules.

Interior tensor product: One of the most important construction in Hilbert mod-

ules is the notion of interior tensor product which we discuss next. Let E be a Hilbert

B-module and F be a Hilbert C-module. Suppose π : B → LC(F ) is a ∗-homomorphism.

Think of F as a left B-module and E as a right B-module. Consider the algebraic tensor

product X := E ⊗B F . Note that C acts naturally on the right on X. Moreover, in X,
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we have the equality eb⊗ f = e⊗ π(b)f for e ∈ E, f ∈ F and b ∈ B. Define a C-valued

semi-definite inner product on X by the formula

〈e1 ⊗ f1|e2 ⊗ f2〉 = 〈f1|π(〈e1|e2))f2〉. (7.6)

The fact that the inner product is positive requires a bit of work.

Lemma 7.14 Let E be a Hilbert B-module. Suppose T ∈ LB(E). The following are

equivalent.

(1) T is a positive element of LB(E).

(2) For every x ∈ E, 〈Tx|x〉 ≥ 0.

Proof. Suppose (1) holds. Write T = S∗S with S ∈ LB(E). Then for x ∈ E,

〈Tx|x〉 = 〈S∗Sx|x〉 = 〈Sx|Sx〉 ≥ 0.

This proves that (1) implies (2).

Now suppose that (2) holds. Note that for x ∈ E, 〈Tx|x〉 = 〈Tx|x〉∗ = 〈x|Tx〉. For

x, y ∈ E, let [x, y] = 〈Tx|y〉 and [x, y] = 〈x|Ty〉. Both [ , ] and [ , ]
′

are sesquilinear

B-valued forms and [x, x] = [x, x]
′
for x ∈ E. By the polarisation identity, it follows that

the forms [ , ] and [ , ]′ agree. Consequently 〈Tx|y〉 = 〈x|Ty〉. In other words, T = T ∗.

Write T = R − S with R, S ≥ 0 and SR = RS = 0. For x ∈ E, calculate as follows

to observe that

0 ≤ 〈TSx|Sx〉
≤ −〈S3x|x〉
≤ 0( as S3 is positive ).

Hence 〈S3x|x〉 = 0 for every x ∈ E. By the polarisation identity, it follows that 〈S3x|y〉 =

0 for x, y ∈ E. Hence S3 = 0 which forces S = 0. Thus T = R ≥ 0. This completes the

proof. 2

Exercise 7.4 Let T ∈ LB(E) be such that T ≥ 0. Prove that

||T || = sup{||〈x|Tx〉|| : ||x|| = 1}.

Lemma 7.15 Let E be a Hilbert B-module and e1, e2, · · · , en ∈ E be given. Then the

matrix (〈ei|ej〉) is a positive element of Mn(B).
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Proof. Consider the Hilbert B-module Bn := B⊕B⊕ · · · ⊕B. Think of elements of Bn

as column vectors. For A ∈Mn(B), let LA : Bn → Bn be defined by

LA(x) = Ax.

Then LA is an adjointable operator on Bn and the map Mn(B) 3 A→ LA ∈ LB(Bn) is

an injective ∗-homomorphism (Justify!).

Let A := (〈ei|ej〉). It suffices to show that LA is positive. In view of Lemma 7.14, it

suffices to show that 〈x|LA(x)〉 ≥ 0. Let x := (b1, b2, · · · , bn)t be given. Note that

〈x|LA(x)〉 =
n∑
i=1

b∗i (
n∑
j=1

〈ei|ej〉bj) =
∑
i,j

〈eibi|ejbj〉 = 〈
∑
i

eibi|
∑
i

eibi〉 ≥ 0.

This completes the proof. 2

We now prove that Eq. 7.6 defines a positive semi-definite inner product. Keep

the notation used in the paragraph preceding Eq. 7.6. Let x :=
∑n

i=1 ei ⊗ fi be an

arbitrary element in X. The representation π “amplifies naturally” to a representation

of Mn(B) on the Hilbert C-module F n := F ⊕ F ⊕ · · · ⊕ F . Since (〈ei|ej〉) is a positive

element in Mn(B), the operator T := (π(〈ei|ej〉)) is a positive operator on F n. Set

f := (f1, f2, · · · , fn)t. Then

〈x|x〉 = 〈f |Tf〉 ≥ 0.

Thus 〈 | 〉 defines a positive semi-definite C-valued inner product on X. We mod out

the null vectors and complete it to obtain a genuine Hilbert C-module. We denote the

resulting C-module by E⊗π F . The module E⊗π F is called the interior tensor product

or the internal tensor product of E and F .

Proposition 7.16 Keep the foregoing notation. Suppose T ∈ LB(E). Then there exists

a unique adjointable operator denoted T ⊗ 1 on E ⊗π F such that

(T ⊗ 1)(e⊗ f) = Te⊗ f

for e ∈ E and f ∈ F .

Proof. Let x :=
∑n

i=1 ei ⊗ fi be given. We claim that∑
i,j

〈fi|π(〈Tei|Tej〉)fj〉 ≤ ||T ||2
∑
i,j

〈fi|π(〈ei|ej〉)fj〉. (7.7)

We leave it to the reader to convince herself that once Eq. 7.7 is established, the con-

clusion follows. Argue as in the previous lemma, with the aid of the next exercise, that

the matrix (〈Tei|Tej〉) ≤ ||T ||2(〈ei|ej〉).
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Let A := (π(〈Tei|Tej〉)) and B := ||T ||2(π(〈ei|ej〉)). Then A and B are adjointable

operators on F n and A ≤ B. Set f := (f1, f2, · · · , fn)t. Inequality 7.7 follows from the

fact that 〈f |Af〉 ≤ 〈f |Bf〉. This completes the proof. 2

Exercise 7.5 Let E be a Hilbert B-module and T ∈ LB(E) be given. Prove that for

x ∈ E, 〈Tx|Tx〉 ≤ ||T ||2〈x|x〉.

Hint: Write ||T ||2 − T ∗T as S∗S for some S ∈ LB(E).

Remark 7.17 We have the following.

(1) The map LB(E) 3 T → T ⊗ 1 ∈ LB(E ⊗π F ) is a ∗-homomorphism. If π is

injective then the map T → T ⊗ 1 is injective.

(2) Suppose (Ti) is a bounded net which converges to T in the ∗-strong topology. Then

Ti ⊗ 1→ T ⊗ 1 in the ∗-strong topology.

Proposition 7.16 leads us to a very important notion of induced representations due

to Rieffel ([12]). The data given is as follows. Suppose E is a Hilbert B-module and

let φ : A → LB(E) be a representation. E is usually called a Hilbert A-B bimodule.

Suppose π is a representation of B on a Hilbert space H. Consider the Hilbert space

Hπ := E ⊗π H. For a ∈ A, define Ind(π)(a) on Hπ by

Ind(π)(a) = φ(a)⊗ 1.

Then Ind(π) is a representation of A on the Hilbert spaceHπ. The representation Ind(π)

is called the representation induced by π via the bimodule E.

Suppose π1 and π2 are representations of B on the Hilbert spacesH1 andH2. Suppose

T : H1 → H2 is an intertwiner, i.e. Tπ1(b) = π2(b)T . Because T commutes with the

action of B, the map 1 ⊗ T is well-defined first on the algebraic level and then extends

to give a genuine adjointable operator from E⊗π1H1 → E⊗π2H2. It is clear that 1⊗T
commutes with the left action of A. Or in other words, 1 ⊗ T intertwines Ind(π1) and

Ind(π2).

Summarising the above discussion, we observe that

π → Ind(π)

is a functor from the category of representations of B to the category of representations

of A.
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Remark 7.18 We can try to seek an inverse for the above functor which leads us to the

notion of Morita equivalence which we will discuss later in the course. The idea is that

we can define an inverse if there is a B-A Hilbert bimodule F such that E ⊗B F ∼= A

and F ⊗A E ∼= B as bimodules. Such bimodules exist if A and B are Morita equivalent

in the sense of Rieffel (see the Section 10). Rieffel’s induction then ensures that the

representation theory of A and that of B are the same.

The first remarkable result due to Rieffel is that C0(G/H) o G is Morita equivalent

to C∗(H) where G is a locally compact group and H is a closed subgroup of G.

Let us return back to our original motivation for considering Hilbert C∗-modules

which is to establish that the reduced C∗-norm does not depend on the choice of the

faithful representation. Let (A,G, α) be a C∗-dynamical system. Let E0 := Cc(G,A) be

the pre-Hilbert A-module constructed earlier. The inner product and the right action of

A are given by

〈f |g〉A : =

∫
∆(t)−1αt(f(t−1)∗)αt(g(t−1))dt

(f.a)(s) := f(s)αs(a)

for f, g ∈ E0 and a ∈ A. Denote the completion of E0 by E.

Let (iA, iG) be the covariant representation of (A,G, α) on E as in Exercise 7.3. Recall

that the formulas for iA and iG are given by

iA(a)f(t) = af(t)

iG(s)f(t) := αs(f(s−1t))

for f ∈ E0, a ∈ A and s ∈ G.

Fix a faithful non-degenerate representation π of A on H. Set H̃ := L2(G,H). For

a ∈ A and s ∈ G, let π̃ and λs be the bounded operators on H̃ defined by

λsξ(t) = ξ(s−1t)

π̃(a)ξ(t) = π(α−1t (a))ξ(t).

For f ∈ Cc(G,A), the reduced C∗-norm is ||(π̃ o λ)(f)||. We prove that ||f ||red =

||(iA o iG)(f)|| and the right side does not depend on the representation π.

The trick is to use Rieffel’s induction. Note that π is a representation of A on H.

Thus we can form the interior tensor product E ⊗π H which is a Hilbert space and we

show that the latter Hilbert space is identified with H̃ by a specific unitary. Once this
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identification is made then we show iA(a)⊗1 = π̃(a) and iG(s)⊗1 = λs. On integration,

we get for f ∈ Cc(G,A), (iA o iG)(f) ⊗ 1 = (π̃ o λ)(f). Since π is faithful , the map

LB(E) 3 T → T ⊗ 1 ∈ B(H̃) is 1-1 and hence preserves the norm. Consequently,

||f ||red = ||(iA o iG)(f)||. The verification is carried out in the next exercise.

Exercise 7.6 Assume that G is discrete. Show that there exists a unique unitary oper-

ator U : E ⊗π H → `2(G)⊗H such that

U((a⊗ δt)⊗ ξ) = δt ⊗ π(α−1t (a))ξ.

Prove that U(iA(a) ⊗ 1)U∗ = π̃(a) and U(iG(s) ⊗ 1)U∗ = λs for a ∈ A and s ∈ G.

Conclude that for f ∈ Cc(G,A),

||f ||red = ||(iA o iG)(f)||.

Treat the topological case similarly.
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8 Irreducible representations of the Heisenberg group

As an application of the material developed so far, we determine in this section, the

irreducible representations of the Heisenberg group. Let n ≥ 1 and set H2n+1 = Rn ×
Rn × R. The group law on H2n+1 is defined by

(x1, y1, z1)(x2, y2, z2) := (x1 + x2, y1 + y2, z1 + z2 + 〈x1|y2〉).

Verify that H2n+1 together with the group law defined above is indeed a topological

group.

Exercise 8.1 Let Z be the center of H2n+1. Show that Z = {(0, 0, z) : z ∈ R}.

Proposition 8.1 (Schur’s lemma) Let G be a locally compact group and π : G →
U(H) be a strongly continuous unitary representation. Suppose that π is irreducible.

Then the commutant π(G)
′
= C.

Proof. Note that π(G)
′

is a von-Neumann algebra. The irreducibility of π implies that

the only projections in π(G)
′
are 0 and 1. However, a von-Neumann algebra is generated

by its set of projections. Consequently, π(G)
′
= C. 2

Proposition 8.2 Suppose π : H2n+1 → U(H) be a strongly continuous unitary repre-

sentation. Assume that π is irreducible. Then there exists a unique λ ∈ R such that for

z ∈ R,

π(0, 0, z) = eiλz.

For x ∈ Rn and y ∈ Rn, set Ux := π(x, 0, 0) and Vy = π(0, y, 0). Then {Ux}x∈Rn and

{Vy}y∈Rn are strongly continuous group of unitaries such that

UxVy = eiλ〈x|y〉VyUx (8.8)

for x ∈ Rn and y ∈ Rn. Moreover the commutant {Ux, Vy : x, y ∈ Rn}′ = C.

Conversely, suppose {Ux}x∈Rn and {Vy}y∈Rn are strongly continuous unitary repre-

sentations on a Hilbert space H which satisfy Eq. 8.8. Moreover suppose {Ux, Vy : x, y ∈
Rn}′ = C. For (x, y, z) ∈ H2n+1, set

π(x, y, z) = eiλzVyUx.

Then π defines an irreducible representation of H2n+1.
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Proof. Note that π(0, 0, z) commutes with π(H2n+1) for every z ∈ Rn. By Schur’s lemma,

it follows that π(0, 0, z) ∈ T. Since π is a strongly continuous representation, it follows

that the map R 3 z → π(0, 0, z) ∈ T is a continuous group homomorphism. Hence there

exists a unique λ ∈ R such that π(0, 0, z) = eiλz.

Note that in H2n+1,

(x, 0, 0)(0, y, 0) = (0, y, 0)(x, 0, 0)(0, 0, 〈x|y〉).

Hence Eq. 8.8 is satisfied. Note that π(H2n+1)
′

= {Ux, Vy : x, y ∈ Rn}′. Since π is

irreducible, it follows that {Ux, Vy : x, y ∈ Rn}′ = C. The proof of the converse part is

routine. 2

Remark 8.3 The relation 8.8 when λ = 1 is usually called the “Weyl commutation”

relation.

Definition 8.4 Let H be a Hilbert space and U := {Ux}x∈Rn and V := {Vy}y∈Rn be

strongly continuous group of unitaries. We say that the pair (U, V ) is a Weyl family of

unitaries with phase factor λ if Eq. 8.8 is satisfied. We call the pair (U, V ) irreducible

if the commutant {Ux, Vy : x, y ∈ Rn}′ = C.

In view of Prop. 8.2, the problem of determining the irreducible representations of

the Heisenberg group reduces to the determination of Weyl family of unitaries which

are irreducible. Case 1: λ = 0 In this case, a Weyl family (U, V ) corresponds to

two unitary representations of Rn which commute. Equivalently, in this case, a Weyl

family corresponds to a unitary representation of the cartesian product Rn × Rn. Thus

irreducible Weyl families are precisely the irreducible representations of the abelian group

Rn × Rn or in other words the characters of R2n. The dual of R2n is R2n.

Let µ ∈ R2n be given. Write µ := (µ1, µ2) with µ1, µ2 ∈ Rn. Set Ux := ei〈µ1|x〉

and Vy := ei〈µ2|y〉. Then (U, V ) is an irreducible Weyl family of unitaries on the one

dimensional Hilbert space C with phase factor λ = 0. Up to unitary equivalence, every

such Weyl family arises this way. Moreover for distinct values of µ, the corresponding

Weyl families are inequivalent.

The non-trivial case is when λ 6= 0. For the rest of our discussion, λ will be a fixed

non-zero real number. The first order of business is to exhibit an irreducible Weyl family

with phase factor λ. Let H := L2(Rn). For x, y ∈ Rn, let Ux and Vy be the unitary

operators on H defined by the following equation

Uxf(t) := f(t− x)

Vyf(t) := e−iλ〈y|t〉f(t)
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Proposition 8.5 Keep the foregoing notation. The pair (U, V ) is an irreducible Weyl

family with phase factor λ.

Proof. It is routine to verify that U and V are strongly continuous unitary representations

of Rn and they satisfy Eq. 8.8. Consider L∞(Rn) and let M : L∞(Rn) → B(H) be the

multiplication representation, i.e. for φ ∈ L∞(Rn) and f ∈ H,

M(φ)f(t) = φ(t)f(t).

Note that L∞(Rn) 3 φ → M(φ) ∈ B(H) is continuous when L∞(Rn) is given the weak

∗-topology (after identifying L∞(Rn) with the dual of L1(Rn)) and when B(H) is given

the weak operator topology.

Claim: The linear span of {e−iλ〈y|t〉 : y ∈ Rn} is weak ∗-dense in L∞(Rn). Suppose

not. Then there exists a non-zero f ∈ L1(Rn) such that for y ∈ Rn,∫
f(t)e−iλ〈y|t〉dt = 0.

In other words, the Fourier transform of f is zero which in turn implies f = 0. This is a

contradiction. This proves our claim.

Suppose T ∈ B(H) is such that TUx = UxT and TVy = VyT for x, y ∈ Rn. The

density of {e−iλ〈y|t〉 : y ∈ Rn} in L∞(Rn) implies that TM(φ) = M(φ)T for every

φ ∈ L∞(Rn). It is well known that the commutant of L∞(Rn) is L∞(Rn) (see, for

instance, Theorem 2.2.1 of [1]). Hence there exists φ ∈ L∞(Rn) such that T = M(φ).

Now the equation UxTU
∗
x = T implies that for every x ∈ Rn, φ(t + x) = φ(t) for

almost all t ∈ Rn. Let ωφ : Cc(Rn)→ R be defined by

ωφ(f) =

∫
f(t)φ(t)dt.

To show that φ is a scalar, it suffices to show that ωφ is a scalar multiple of the linear

functional I : Cc(Rn)→ C defined by the equation

I(f) =

∫
f(t)dt.

Let g ∈ Cc(Rn) be such that I(g) = 0. Choose f ∈ Cc(Rn) such that
∫
f(t)dt = 1.
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Calculate as follows to observe that

ωφ(g) =

∫
f(s)(

∫
g(t)φ(t)dt)ds

=

∫
f(s)(

∫
g(t)φ(t− s)dt)ds

=

∫
g(t)(

∫
f(s)φ(t− s)ds)dt

=

∫
g(t)(

∫
f(s)φ(−s)ds)dt

= (

∫
g(t)dt)(

∫
f(s)φ(−s)ds)

= 0.

Hence Ker(I) ⊂ Ker(ωφ). This shows that ωφ is a scalar multiple of I. Hence φ is a

scalar and consequently T is a scalar. This proves that the commutant {Ux, Vy : x, y ∈
Rn}′ = C. The proof is now complete. 2

Theorem 8.6 (Stone-von Neumann) Let (Ũ , Ṽ ) be an irreducible Weyl family of

unitaries with phase factor λ on a Hilbert space H̃. Denote the Weyl family constructed

in Proposition 8.5 by (U, V ). Then (Ũ , Ṽ ) is unitarily equivalent to (U, V ). This means

that there exists a unitary T : H̃ → H such that T ŨxT
∗ = Ux and T ṼyT

∗ = Vy.

The proof of Stone-von Neumann’s theorem relies on the following steps.

(1) First we show that Weyl family of unitaries are in 1-1 correspondence with covariant

representations of the dynamical system (C0(Rn),Rn, α) where the action α is by

translations. Moreover the correspondence respects irreducibility.

(2) Thus the problem reduces to the determination of irreducible covariant represen-

tations of (C0(Rn),Rn, α) or in other words determining the irreducible represen-

tations of the crossed product C0(Rn) oRn.

(3) Next, we show that C0(Rn) o Rn is isomorphic to K(L2(Rn)).3 Since the alge-

bra of compact operators has only one irreducible representation, up to unitary

equivalence, the theorem follows.

For y ∈ Rn, let αy : C∗(Rn)→ C∗(Rn) be defined by

αyf(x) = e−iλ〈x|y〉f(x).

3For the discrete version, see Prop. 2.17.
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It is routine to verify that α := {αy}y∈Rn is an action of Rn on C∗(Rn). Let (U, V ) be

a Weyl family of unitaries with phase factor λ. Denote the integrated form of U by πU .

Then (πU , V ) is a covariant representation of the dynamical system (C∗(Rn),Rn, α).

Conversely, suppose (π, V ) is a non-degenerate covariant representation of (C∗(Rn),Rn, α).

Let U := {Ux}x∈Rn be the strongly continuous unitary representation of Rn whose inte-

grated form is π. Note that (π, V ) is covariant implies that for y ∈ Rn, f ∈ Cc(Rn) and

vectors ξ, η, we have∫
f(x)〈VyUxV ∗y ξ|η〉dx =

∫
e−iλ〈x|y〉f(x)〈Uxξ|η〉dx.

Since the above equality is true for every f ∈ Cc(Rn), it follows that VyUxV
∗
y = e−iλ〈x|y〉Ux

for x, y ∈ Rn. In other words, it follows that (U, V ) is a Weyl family of unitaries with

phase factor λ.

Exercise 8.2 Prove that the correspondence (U, V )→ (πU , V ) preserves irreducibility.

Since the dual of Rn is Rn, it follows from Gelfand-Naimark theorem (see Theorem 5.18)

that the map σ : C∗(Rn)→ C0(Rn) defined by the equation

σ(f)(s) =

∫
eiλ〈s|x〉f(x)dx

is an isomorphism. Note that for y ∈ Rn and f ∈ Cc(Rn), σ(αy(f)) = Ly(σ(f)) where

for g ∈ C0(Rn), Ly(g)(s) = g(s − y). Thus the dynamical system (C∗(Rn),Rn, α) is

isomorphic to (C0(Rn),Rn, L). Thus, the final step in the proof of Stone-von Neumann

theorem is the fact that C0(Rn) o Rn is isomorphic to K(L2(Rn)). We prove the latter

assertion for a general locally compact group.4

Let A be a C∗-algebra and A be a dense ∗-algebra of A. Suppose X is a second

countable locally compact Hausdorff topological space. For a ∈ A and f ∈ Cc(G), let

f ⊗ a ∈ Cc(X,A) be defined by

(f ⊗ a)(x) := f(x)a.

Proposition 8.7 The linear span of {f ⊗ a : f ∈ Cc(X), a ∈ A} is dense in Cc(X,A)

with respect to the inductive limit topology.

4We give a proof only in the unimodular case and leave the intricacies with the modular function to

the interested reader.
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Proof. Let F ∈ Cc(X,A) be given. Denote the support of F by K. Choose an open

set U such that K ⊂ U and U is compact. Fix n ≥ 1. For x ∈ K, choose an open

set Ux ⊂ U such that for y ∈ Ux, ||F (y) − F (x)|| ≤ 1
2n

. Choose ax ∈ A such that

||F (x) − ax|| ≤ 1
2n

. Note that for y ∈ Ux, ||F (y) − ax|| ≤ 1
n
. The family {Ux : x ∈ K}

covers K. Choose a finite subcover {Uxi : i = 1, 2, · · · , N}. For i = 1, 2, · · · , N , let

ai = axi . Let {φ1, φ2, · · · , φn} be a family in Cc(X) such that

(a) supp(φi) ⊂ Uxi and 0 ≤ φi ≤ 1, and

(b) for x ∈ K,
∑N

i=1 φi(x) = 1.

Since
∑N

i=1 φ > 0 on K and K is a compact set, it follows that there exists an open

subset V ⊂ U such that K ⊂ V ,
∑N

i=1 φ > 0 on V and V is compact. Let χ ∈ Cc(X) be

such that 0 ≤ χ ≤ 1, χ = 1 on K and supp(χ) ⊂ V . Set ψ := χ∑N
i=1 φi

.

Set Fn :=
∑N

i=1 ψφi ⊗ ai. Then supp(Fn) ⊂ U . Let x ∈ X be given. Calculate as

follows to observe that

||F (x)− Fn(x)|| = ||
N∑
i=1

ψ(x)φi(x)(F (x)− ai)||

≤ ψ(x)
N∑
i=1

φi(x)||F (x)− ai||

≤ 1

n
ψ(x)

N∑
i=1

φi(x) (since ||F (x)− ai|| ≤
1

n
if φi(x) > 0)

≤ 1

n
.

This shows that Fn → F in the inductive limit topology and the proof is complete. 2

Let X be a locally compact second countable Hausdorff space on which G acts on

the left. For s ∈ G and f ∈ C0(X), define

αs(f)(x) = f(s−1x).

Then α := {αs}s∈G is an action of G on C0(X). Consider the vector space Cc(X × G).

The vector space Cc(X × G) has a ∗-algebra structure where the multiplication and

involution are defined by

F ∗G(x, s) =

∫
F (x, t)G(t−1x, t−1s)dt

F ∗(x, s) = ∆(s)−1F (s−1x, s−1).
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for F,G ∈ Cc(X ×G).

For F ∈ Cc(X ×G), let F̃ ∈ Cc(G,C0(X)) be defined by

F̃ (s)(x) := F (x, s).

The map Cc(X × G) 3 F → F̃ ∈ Cc(G,C0(X)) is an embedding and preserves the

∗-algebra structure. By Prop. 8.7, it follows that Cc(X × G) is dense in Cc(G,C0(X)).

Consequently, Cc(X ×G) is a dense ∗-subalgebra of the crossed product C0(X) oG.

Theorem 8.8 Let G be a unimodular group. The crossed product C0(G)oG is isomor-

phic to K(L2(G)).

Proof. In view of Exercise 1.2, it suffices to exhibit a family {θf,g : f, g ∈ Cc(G)} in

C0(G) oG such that

(1) for f1, f2, g1, g2 ∈ Cc(G), θf1,g1θf2,g2 = 〈f2|g1〉θf1,g2 ,

(2) for f, g ∈ Cc(G), θ∗f,g = θg,f , and

(3) the linear span of {θf,g : f, g ∈ Cc(G)} is dense in C0(G) oG.

For f, g ∈ Cc(G), let θf,g ∈ Cc(X ×G) be defined by

θf,g(x, s) = f(x)g(s−1x).

Here X = G. It is routine to check (1) and (2). By Prop. 8.7 and the fact that the map

X × G 3 (x, s) → (x, s−1x) → X × X is a homeomorphism, it follows that the linear

span of {θf,g : f, g ∈ Cc(G)} is dense in C0(G) oG. The proof is now complete. 2

The reader interested to know more about the history of Stone-von Neumann theorem

and its role in subsequent developments in the C∗-algebra should consult the excellent

essay [14] by Jonathan Rosenberg.
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9 The non-commutative torus Aθ

In this section, we discuss the simplicity of the C∗-algebra, called the non-commutative

torus, associated to irrational rotations on the circle. The non-commutative torus is

probably the widely studied example in the field of non-commutative geometry.

Definition 9.1 Let θ ∈ R be given. The non-commutative torus Aθ is the universal

C∗-algebra generated by two unitaries u, v such that

uv = e2πiθvu.

The reason Aθ is called the non-commutative torus is because when θ = 0, Aθ is iso-

morphic to C(T2). First we realise Aθ as a crossed product. Let α : C(T) → C(T) be

defined by

α(f)(z) = f(e−2πiθz).

Let ũ := z ∈ C(T). Then α(ũ) = e−2πiθũ. Then α is an automorphism of C(T). The

automorphism α induces an action of the cyclic group Z on C(T). Consider the crossed

product C(T) o Z. By the definition of the crossed product, C(T) o Z is the universal

C∗-algebra generated by a copy of C(T) and a unitary ṽ such that

ṽf ṽ∗ = α(f)

for f ∈ C(T). However, C(T) is generated by ũ and the equation ũṽ = e2πiθṽũ is satisfied

in C(T)oZ. Consequently, there exists a surjective ∗-homomorphism φ : Aθ → C(T)oZ
such that φ(u) = ũ and φ(v) = ṽ.

Note that C(T) is the universal C∗-algebra generated by the unitary ũ. Consequently,

there exists a homomorphism π : C(T) → Aθ such that π(ũ) = u. The relation uv =

e2πiθvu implies that the pair (π, v) is a covariant representation of (C(T),Z, α). Denote

the homomorphism π o v from C(T) o Z → Aθ by ψ. It is clear that ψ(ũ) = u and

ψ(ṽ) = v. Hence ψ and φ are inverses of each other. This proves that Aθ is isomorphic

to C(T) o Z.

The main theorem of this section is that if θ is irrational then Aθ is simple, i.e. it

has no non-trivial closed two sided ideals. The proof makes use of a very useful notion

called conditional expectation.

Definition 9.2 Let A be a C∗-algebra and B ⊂ A be a C∗-subalgebra. A linear map

E : A→ B is called a conditional expectation of A onto B if
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(1) for b ∈ B, E(b) = b,

(2) for b1, b2 ∈ B and a ∈ A, E(b1ab2) = b1E(a)b2, and

(3) for a ∈ A, E(a∗a) ≥ 0.

The conditional expectation E is said to be faithful if whenever E(a∗a) = 0, a = 0.

Lemma 9.3 Let E : A → B be a conditional expectation. Then E is contractive, i.e.

for a ∈ A, ||E(a)|| ≤ ||a||.

Proof. Consider the Hilbert B-module B. Represent B as adjointable operators on B

by left multiplication. That is, for b ∈ B, let Lb : B → B be defined by Lb(c) = bc.

Then Lb is adjointable for every b ∈ B. Moreover, B 3 b → Lb ∈ LB(B) is an injective

∗-homomorphism. Hence for b ∈ B, ||b|| = ||Lb||. Suppose a ∈ A is a positive element.

Calculate, using Exercise 7.4, as follows to observe that

||E(a)|| = ||LE(a)||
= sup{||〈b|E(a)B〉|| : b ∈ B, ||b|| = 1}
= sup{||b∗E(a)b|| : b ∈ B, ||b|| = 1}
= sup{||E(b∗ab)|| : b ∈ B, ||b|| = 1}
≤ sup{||E(b∗||a||b)|| : b ∈ B, ||b|| = 1}
≤ ||a||.

For a1, a2 ∈ A, let 〈a1|a2〉 = E(a∗1a2). Then 〈 | 〉 is a B-valued semi-definite inner

product. Hence by Cauchy-Schwarz inequality, we have for b ∈ B and a ∈ A,

||b∗E(a)|| = ||E(b∗a)|| ≤ ||E(b∗b)||
1
2 ||E(a∗a)||

1
2 ≤ ||b||||a||.

Let (eλ) be an approximate identity of B. The above equation implies that ||eλE(a)|| ≤
||a||. But eλE(a) → E(a) in B. Consequently, ||E(a)|| ≤ ||a|| for every a ∈ A. This

completes the proof. 2

Remark 9.4 A theorem due to Tomiyama asserts that if E : A → B is a contractive

linear map such that E(b) = b for every b ∈ B then E is a conditional expectation of A

onto B.
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Here is an example of a conditional expectation. Suppose A is a a C∗-algebra and

α := {αs} is an action of a compact group G on A. We choose the Haar measure on G

so that the G has measure 1. The fixed point algebra of α, denoted Aα, is defined by

Aα := {a ∈ A : αs(a) = a∀s ∈ G}.

Note that Aα is a C∗-subalgebra of A. Define E : A→ A by

E(a) =

∫
αs(a)ds.

Exercise 9.1 Verify that E is a faithful conditional expectation of A onto Aα.

Let (A,G, α) be a C∗-dynamical system. Assume that G is discrete and abelian. Note

that Ĝ is a compact group. For the sake of simplicity, assume that A is unital. Recall

that the crossed product A oα G is the universal C∗-algebra generated by a copy of

A and unitaries {us : s ∈ G} such that usut = ust and usau
∗
s = αs(a) for a ∈ A.

This universal picture reveals that for χ ∈ Ĝ, there exists a unique ∗-homomorphism

βχ : AoG→ AoG such that

βχ(a) = a

βχ(us) = χ(s)us.

Then β := {βχ}χ∈Ĝ is an action of Ĝ on the crossed product A o G. The action β is

called the dual action on the crossed product A o G. We claim that the fixed point

algebra of β is A. Set B = A o G. It is clear that A ⊂ Bβ. Let E : B → Bβ be the

conditional expectation given by

E(b) :=

∫
βχ(b)dχ.

It suffices to show that E(b) ∈ A for every b ∈ B. Since A is closed in AoG and E

is continuous, it suffices to show that E(b) ∈ A whenever b is the form b =
∑

s∈G asus. It

is clear that it suffices to show that E(aus) = 0 if s 6= e. Let s 6= e and a ∈ A be given.

Note that

E(aus) =

∫
aχ(s)usdχ = (

∫
χ(s)dχ)aus.
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Since s 6= e, by Raikov’s theorem, there exists a character χ0 of G such that χ0(s) 6= 1.

Calculate as follows to observe that∫
χ(s)dχ =

∫
(χ0χ)(s)dχ (by the left invariance of the Haar measure)

=

∫
χ0(s)χ(s)dχ

= χ0(s)(

∫
χ(s)dχ).

Since χ0(s) 6= 1, it follows that
∫
χ(s)dχ = 0. This proves that E(aus) = 0 if s 6= e.

Hence A = Bβ.

Remark 9.5 If b =
∑

s∈G asus then E(b) = ae.

Let us turn our attention back to Aθ. For the rest of this section, assume that θ is

irrational. Write Aθ = C(T) o Z. Denote the generating unitary of C(T) by u and the

unitary corresponding to the generator 1 of the group Z by v. Then uv = e2πiθvu. Let

E : Aθ → C(T) be the conditional expectation constructed out of the dual action of

Ẑ = T on Aθ. For n ≥ 1, let En : Aθ → Aθ be defined by

En(x) :=
1

n+ 1

n∑
k=0

ukxu∗k.

The crucial fact that we need to conclude the simplicity of Aθ is the following.

Lemma 9.6 For x ∈ Aθ, En(x)→ E(x).

Proof. It suffices to check that for x = urvs with r, s ∈ Z, En(x) → E(x). For the

sequence {En}n≥1 is bounded. Let r, s ∈ Z be given and let x = urvs. It is clear that

if s = 0, En(x) = ur = E(x). It suffices to consider the case when s 6= 0 which we

henceforth assume. Set z = e2πisθ. Since θ is irrational, it follows that z 6= 1. Now a

simple calculation using the relation ukvs = e2πiksθvsuk implies that

En(x) =
1

n+ 1
(
n∑
k=0

e2πiksθ)urvs =
1

n+ 1

(1− zn+1

1− z

)
urvs.

Thus, as n→∞, En(x)→ 0 = E(x). This completes the proof. 2

Theorem 9.7 Let θ be an irrational number. The C∗-algebra Aθ is simple.

77



Proof. Let I ⊂ Aθ be a closed 2-sided non-zero ideal of Aθ. Denote E(I) be J . A

consequence of the previous lemma is that J ⊂ I. Note that J = I ∩ C(T). Since

E is faithful, it follows that J is non-zero. Moreover the fact that E is a conditional

expectation implies that J is a two sided ideal of C(T).

For x ∈ J , αk(x) = vkxv∗k ∈ I. Clearly αk(x) ∈ C(T). Thus J is an α-invariant

ideal of C(T). In other words, α(J) = J . Let F ⊂ T be a closed subset such that

J = {f ∈ C(T) : f vanishes on F}.

The fact that α(J) = J implies that e2πikθF = F for every k ∈ Z. It is well known that

for every x0, {e2πikθx0 : k ∈ Z} is dense in T. We claim that F is empty. Suppose not.

Since F is closed and e2πikθF = F , we have F = T. This however forces J = 0 which is a

contradiction. Hence F = ∅. Consequently, J = C(T) ⊂ I. But then the ideal generated

by C(T) is Aθ. Hence I = Aθ. This completes the proof. 2
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10 Mackey’s imprimitivity theorem : the discrete

case

This section is devoted to a discussion on Mackey’s imprimitivity theorem cast in Rieffel’s

language of Hilbert C∗-modules. We only give a proof in the discrete setting and refer

the reader to the monographs [11] and [17] for the topological case. In Rieffel’s language,

Mackey’s imprimitivity theorem reads as follows.

Theorem 10.1 Let G be a second countable locally compact topological group and H

be a closed subgroup of G. The crossed product C0(G/H) o G is Morita equivalent to

C∗(H).

First we proceed towards defining the notion of strong Morita equivalence due to

Rieffel.

Definition 10.2 Let A and B be C∗-algebras. An A-B imprimitivity bimodule is a

vector space E which has a left A-action and a right B-action together with A-valued

and B-valued inner products satisfying the following

(1) the A-valued inner product is linear in the first variable and conjugate linear in the

second variable,

(2) the B-valued inner product is linear in the second variable and conjugate linear in

the first variable,

(3) for x, y ∈ E and a ∈ A, 〈ax|y〉B = 〈x|a∗y〉B,

(4) for x, y ∈ E and b ∈ B, 〈xb|y〉A = 〈x|yb∗〉A,

(5) for x, y, z ∈ E, 〈x|y〉Az = x〈y|z〉B,

(6) the linear span of {〈x|y〉A : x, y ∈ E} is dense in A,

(7) the linear span of {〈x|y〉B : x, y ∈ E} is dense in B, and

(8) E is complete with respect to the norm induced by both the A-valued and the B-

valued inner products.

Let E be an A-B imprimitivity bimodule. For x ∈ E, define

||x||A : = ||〈x|x〉A||
1
2

||x||B : = ||〈x|x〉B||
1
2 .
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Proposition 10.3 With the foregoing notation, we have ||x||A = ||x||B for every x ∈ E.

Proof. View E as a Hilbert B-module. For a ∈ A, let La : E → E be defined by

La(x) = a.x. Then for every a ∈ A, La is adjointable and the map A 3 a→ La ∈ LB(E)

is a ∗-homomorphism. We claim that a → La is injective. Suppose La = 0. Then

〈ax|y〉A = 0 for every x, y ∈ E. Consequently a〈x|y〉A = 0. But {〈x|y〉A : x, y ∈ E} is

dense in A. Hence ab = 0 for every b ∈ A. This shows that a = 0. This proves our claim.

Let x ∈ E be given. Define θx,x : E → E by θx,x(y) = x〈x|y〉B. Note that θx,x =

L〈x|x〉A . Thus to complete the proof, it suffices to show that for x ∈ E,

||θx,x|| = ||x||2B.

It follows from Cauchy-Schwarz inequality that ||θx,x|| ≤ ||x||2B. Set y := x
||x||B

and

calculate as follows to observe that

||θx,x(y)||2 = ||〈x〈x|y〉|x〈x|y〉〉||

=
1

||x||2
||〈x|x〉〈x|x〉〈x|x〉||

=
1

||x||2
||x||6

= ||x||4.

Hence ||x||2B ≤ ||θx,x||. Consequently, ||θx,x|| = ||x||2B. This completes the proof. 2

Definition 10.4 Let A and B be C∗-algebras. We say that A and B are Morita equiv-

alent if there exists an A-B imprimitivity bimodule.

Example 10.5 Let A be a C∗-algebra. Set E := A and B := A. Then E is a Hilbert

B-module. The C∗-algebra A acts on E by left multiplication. Define an A-valued (left)

inner product on E by

〈x|x〉A = xy∗.

Then E is an A-A imprimitivity bimodule.

Example 10.6 Let A be a C∗-algebra and p ∈ A be a projection. Suppose the ideal

generated by p is A. Let B := pAp. Set E := pA. Define a B-valued inner product on

E by

〈x|y〉 = xy∗.

Then E is a B-A imprimitivity bimodule.
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The algebra of compact operators of a Hilbert module: Let E be a Hilbert

B-module. For x, y ∈ E, let θx,y : E → E be defined by

θx,y(z) = x〈y|z〉.

Note that for x, y ∈ E, θx,y is an adjointable operator and θ∗x,y = θy,x. Moreover for

T ∈ LB(E), Tθx,y = θTx,y and θx,yT = θx,T ∗y. The C∗-algebra of compact operators on

E, denoted KB(E), is defined to be the closed linear span of {θx,y : x, y ∈ E}.

Remark 10.7 Let A be a C∗-algebra and consider the Hilbert A-module E := A. For

a ∈ A, let La : E → E be defined by La(x) = ax. Note that for x, y ∈ E, θx,y = Lxy∗.

This implies that A 3 a→ La ∈ KB(E) is an isomorphism.

Suppose A is unital. Then L1 is the identity operator which is not compact in the

sense of Banach space theory unless the algebra A is finite dimensional. Thus compact

operators in the sense of Hilbert C∗-modules need not be compact in the usual Banach

space theory sense.

Exercise 10.1 Let E := An be n copies of A. Show that Mn(A) is isomorphic to

KA(An).

Let E be a Hilbert B-module and set A := KB(E). The C∗-algebra A acts on E on

the left by the formula: T.x = Tx for T ∈ KB(E) and x ∈ E. Define an A-valued inner

product on E by

〈x|y〉A = θx,y.

The proof of Proposition 10.3 imply that for x ∈ E, ||θx,x|| = ||x||2. It is routine to verify

that E satisfies all the axioms, except (7), of Definition 10.2. Note that for a Hilbert

B-module E, the linear span of {〈x|y〉 : x, y ∈ E} is always a two sided ideal.

Definition 10.8 Suppose E is a Hilbert B-module. The Hilbert module E is said to be

full if the closed linear span of {〈x|y〉 : x, y ∈ E} is B.

Proposition 10.9 Let A and B be C∗-algebras. The following are equivalent.

(1) The C∗-algebras A and B are Morita equivalent.

(2) There exists a full Hilbert B-module and a faithful representation φ : A → LB(E)

such that φ(A) = KB(E).
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Proof. Suppose (1) holds. Let E be an A-B imprimitivity bimodule. For a ∈ A, let

φ(a) : E → E be defined by φ(a)(x) = ax. In the proof of Prop. 10.3, we observed that

A 3 a → φ(a) ∈ LB(E) is injective. Note that for x, y ∈ E, φ(〈x|y〉A) = θx,y. Since

{〈x|y〉A : x, y ∈ E} is dense in A, it follows that the image of φ is KB(E). Axiom (7)

implies that E is a full Hilbert B-module.

We have already observed that if E is a full Hilbert B-module then E is a KB(E)-B

imprimitivity bimodule. Thus (2) =⇒ (1) is clear. 2

Next we show that Morita equivalence is indeed an equivalence relation on C∗-

algebras.

Proposition 10.10 Morita equivalence is an equivalence relation.

Proof. We have already observed that A is an A-A imprimitivity bimodule. Suppose E

is an A-B imprimitivity bimodule. Denote the conjugate vector space by E. Then as a

set E is just E. For an element x ∈ E, when we regard x as an element of E, we write

j(x) for x. The addition and scalar multiplication are defined by

j(x) + j(y) = j(x+ y)

λ.j(x) = j(λx).

Then E is a B-A imprimitivity bimodule where the right action of A, the left action of

B and the inner products are given by

j(x).a = j(a∗x)

b.j(x) = j(xb∗)

〈j(x)|j(y)〉A = 〈x|y〉A
〈j(x)|j(y)〉B = 〈x|y〉B

for x, y ∈ E and a ∈ A, b ∈ B. Suppose E is an A-B imprimitivity bimodule and F

is a B-C imprimitivity bimodule then the interior tensor product E ⊗B F is an A-C

imprimitivity bimodule. 2

Remark 10.11 Let E be a A-B imprimitivity bimodule and E be a conjugate B-A

imprimitivity bimodule constructed in the previous proposition. Then the maps

E ⊗B E 3 x⊗ j(y)→ 〈x|y〉A ∈ A

and

E ⊗A E 3 j(x)⊗ y → 〈x|y〉B ∈ B
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are isomorphisms of Hilbert modules. Thus E⊗BE ∼= A and E⊗AE ∼= B. Thus Morita

equivalent C∗-algebras have the same representation theory (See Remark 7.18).

In practice, imprimitivity bimodules are always constructed by the process of com-

pletion. The setup we usually have is as follows. Let A0 be a dense C∗-subalgebra of A

and B0 be a dense C∗-subalgebra of B where A and B are C∗-algebras.

Definition 10.12 A pre A0-B0 imprimitivity bimodule is a vector space E0 which is a

A0-B0 bimodule with an A0-valued and a B0-valued semi-definite inner products such

that

(1) the A0-valued inner product is linear in the first variable and conjugate linear in

the second variable,

(2) the B0-valued inner product is linear in the second variable and conjugate linear in

the first variable,

(3) for x, y ∈ E0 and a ∈ A0, 〈ax|y〉B0 = 〈x|a∗y〉B0,

(4) for x, y ∈ E0 and b ∈ B0, 〈xb|y〉A0 = 〈x|yb∗〉A0,

(5) for x, y, z ∈ E0, 〈x|y〉A0z = x〈y|z〉B0,

(6) for x ∈ E0, a ∈ A0 and b ∈ B0, 〈ax|ax〉B0 ≤ ||a||2〈x|x〉B0 and 〈xb|xb〉A0 ≤
||b||2〈x|x〉A0, and

(7) the set {〈x|y〉A0 : x, y ∈ E0} and the {〈x|y〉B0 : x, y ∈ E0} span dense ideals in A

and B respectively.

Proposition 10.13 Let E0 be a A0-B0 imprimitivity bimodule. For x ∈ E,

||〈x|x〉A0|| = ||〈x|x〉B0 ||.

Proof. Let x ∈ E0 be given. Let a = 〈x|x〉A0 . Calculate as follows to observe that

||a||2〈x|x〉B0 ≥ 〈ax|ax〉B0

≥ 〈〈x|x〉A0x|〈x|x〉A0x〉B0

≥ 〈x〈x|x〉B0|x〈x|x〉B0〉B0

≥ 〈x|x〉3B0
.

Taking norms and cancelling ||〈x|x〉B0||, we get ||〈x|x〉A0 ≥ ||〈x|x〉B0||. A similar argu-

ment yields ||〈x|x〉B0|| ≥ ||〈x|x〉A0||. This completes the proof. 2
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Remark 10.14 Suppose E0 is a pre A0-B0 imprimitivity bimodule, first we mod out the

null vectors and then complete to obtain a genuine A-B imprimitivity bimodule. The

previous proposition implies that the null vectors of E0 are the same whether we give the

norm induced by the A0-valued inner product or the B0-valued inner product.

We proceed towards proving Theorem 10.1 in the discrete setting. For the rest of this

section, assume that G is a discrete countable group and H ⊂ G be a subgroup. Denote

the set of left cosets of H by G/H. The group G acts on G/H by left translations. Let

α := {αs}s∈G be the action of G on C0(G/H) induced by the left translation of G on

G/H.

Let us fix notation which will be used throughout. Let A := C0(G/H) o G and

B := C∗(H). Denote the generating unitaries of B by {vt : t ∈ H}. For a ∈ C0(G/H)

and s ∈ G, let a⊗δs ∈ Cc(G,C0(G/H)) be the function whose value at s is a and vanishes

elsewhere. For s ∈ G, let esH ∈ Cc(G/H) be the characteristic function at sH. Note

that αs(etH) = estH for s, t ∈ G. Let A0 be the linear span of {esH ⊗ δt : s ∈ G, t ∈ G}
and B0 be the linear span of {vt : t ∈ H}. Then A0 and B0 are dense ∗-subalgebras of

A and B respectively. Also note that {vt : t ∈ H} and {erH ⊗ δs : r, s ∈ G} form a basis

for B0 and A0 respectively.

Let E0 := Cc(G) and let {εs : s ∈ G} be the standard basis for E0. Define a left A0

action and a right B0 action on E0 by

(erH ⊗ δs).εt : = 1rH(st)εst

εt.vs = εts.

Define an A0-valued sesquilinear form (by extending linearly in the first variable) and a

B0-valued sesquilinear form (by extending linearly in the second variable) by

〈εs|εt〉B0 = 1H(s−1t)vs−1t

〈εs|εt〉A0 = esH ⊗ δst−1 .

Theorem 10.1, in the discrete case, follows from the next theorem.

Theorem 10.15 With the foregoing notation, E0 is a pre A0-B0 imprimitivity bimodule.

Proof. First we show that the sesquilinear forms defined are indeed positive semi-definite.

Let us first deal with the B0-valued sesquilinear form. Let x :=
∑

s∈G asεs ∈ E0 be given.

Let F := {s ∈ G : as 6= 0}. Then F is a finite subset of G. Define an equivalence relation

on F by for s1, s2 ∈ F , s1 ∼ s2 if and only if s1H = s2H. For s ∈ F , let [s] be the
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equivalence class containing s. List the equivalence classes as [s1], [s2], · · · , [sm]. Write

[si] = {sihij : j = 1, 2, · · · , ki} for every i = 1, 2, · · · ,m.

Calculate as follows to observe that

〈x|x〉B0 =
m∑
i=1

( ki∑
r=1

asihirasihisvh−1
ir his

)
=

m∑
i=1

(
(

ki∑
j=1

asihijvhij)
∗(

ki∑
j=1

asihijvhij)
)

≥ 0.

This shows that the B0-valued sesquilinear form is a semidefinite inner product.

Let x :=
∑

s∈G asεs ∈ E0 be given. Fix a non-degenerate representation of the

crossed product C0(G/H) o G. In other words, fix a covariant representation (π, U) of

the C∗-dynamical system (C0(G/H), G, α). Calculate as follows to observe that

(π o U)(〈x|x〉A0) =
∑
s,t∈G

asatπ(esH)Ust−1

=
∑
s,t∈G

asatUsπ(eH)U∗t (since Usπ(eH)U∗s = π(esH))

=
(∑
s∈G

asUsπ(eH)
)(∑

s∈G

asUsπ(eH)
)∗

≥ 0.

Since (π o U)(〈x|x〉A0) ≥ 0 for every covariant representation (π, U), it follows that

〈x|x〉A0 ≥ 0 in A. The verifications of the axioms, except Axiom (6), of Defn. 10.12 are

routine and we leave the verification to the reader.

View E0 as a pre Hilbert B0-module. Mod out the null vectors and complete to

obtain a Hilbert B-module E. For s ∈ G and x :=
∑

t∈G atεt, let Us(x) =
∑

t∈G atεst.

Note that for x, y ∈ E0,

〈Usx|Usx〉B0 = 〈x|x〉B0

〈Usx|y〉B0 = 〈x|Us−1y〉B0 .

Thus there exists a unique adjointable operator on E, which again denote by Us, such

that Usεt = εst.

For x =
∑

t∈G atεt ∈ E0, define Px =
∑

t∈G 1H(t)atεt. It is clear that P 2x = Px and
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〈Px|y〉 = 〈x|Py〉 for x, y ∈ E0. For x ∈ E0, calculate as follows to observe that

〈x|x〉B0 = 〈(1− P )x+ Px|(1− P )x+ x〉B0

= 〈(1− P )x|(1− P )x〉B0 + 〈Px|Px〉B0

≥ 〈Px|Px〉B0 .

The above inequality implies that there exists a unique adjointable operator, again de-

noted P , such that Pεt = 1H(t)εt. For s ∈ G, set PsH = UsPU
∗
s . Note that PsH is a

projection. Then

PsH(εt) = 1sH(t)εt.

Hence it follows that PsHPtH = 1H(s−1t). Making use of Proposition 2.5, we conclude

that there exists a unique ∗-homomorphism π : C0(G/H)→ LB(E) such that π(esH) =

PsH . It is routine to verify that (π, U) is a covariant representation of the dynamical

system (C0(G/H), G, α). Also for a ∈ A0 and x ∈ E0, a.x = (π o U)(a)x. Calculate as

follows to observe that for a ∈ A0 and x ∈ E0,

〈ax|ax〉B0 = 〈(π o U)(a)x|(π o U)(a)x〉B
≤ ||a||2〈x|x〉B
≤ ||a||2〈x|x〉B0 .

The verification of the second half of Axiom (6) is similar and therefore relegated to an

exercise. 2

Exercise 10.2 Verify the second half of Axiom (6) and complete the proof of the previous

Theorem.

Remark 10.16 For examples and applications of Mackey’s imprimitivity theorem, we

recommend Tyrone Crisp’s notes available online at www.math.ru.nl/ tcrisp.
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11 K0 of a C∗-algebra

In the next six sections, we give a basic introduction to the subject of K-theory. We will

not give complete proofs of many results and merely give a sketch. The reader interested

in a detailed development should consult [3], [13] or [16].

Let A be a unital algebra over C. Denote the set of isomorphism classes of finitely

generated projective right A-modules 5 by V(A). Then V(A) is an abelian semigroup

with identity. First we obtain a better description of V(A) in terms of idempotents. Let

M be a right A-module. Recall that M is said to be finitely generated and projective if

there exists a right A-module N such that M ⊕N is isomorphic to An for some n ≥ 1.

We always think of elements of An as column vectors.

Exercise 11.1 Let m,n ≥ 1 be given. For x ∈ Mm×n(A), let Tx : An → Am be defined

by Tx(v) = xv. Show that the map

Mm×n(A) 3 x→ Tx ∈ LA(An, Am)

is an isomorphism. Here LA(An, Am) denotes the abelian group of A-linear maps from

An to Am.

Proposition 11.1 We have the following.

(1) For an idempotent e ∈Mn(A), eAn is a finitely generated projective A-module.

(2) Let M be a finitely generated projective A-module. Then there exists a natural

number n and an idempotent e ∈Mn(A) such that M is isomorphic to eAn.

(3) Let e ∈ Mm(A) and f ∈ Mn(A) be such that e and f are idempotents. Then eAm

and fAn are isomorphic as A-modules if and only if there exist x ∈Mm×n(A) and

y ∈Mn×m(A) such that xy = e and yx = f .

Proof. Let e ∈ Mn(A) be an idempotent. Clearly, eAn ⊕ (1 − e)An = An. Therefore

eAn is a finitely generated projective A-module. This proves (1). Let M be a finitely

generated projective A-module. Choose an A-module N such that M ⊕ N = An for

some n. Let T : An → An be the map defined by T (m ⊕ n) = m. Then T is clearly an

idempotent. Hence there exists e ∈ Mn(A) such that e is an idempotent and T is given

by left multiplication by e. Note that M = eAn. This proves (2).

5We only consider right A-modules.
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Let e ∈Mm(A) and f ∈Mn(A) be such that e and f are idempotents. Suppose that

eAn and fAm are isomorphic. Let T : fAn → eAm be an isomorphism and let S be the

inverse of T . Decompose An as An = fAn⊕(1−f)An and Am as Am = eAm⊕(1−e)Am.

Let X : An → Am be defined by X(u, v) = (Tu, 0) and Y : Am → An be defined by

Y (u, v) = (Su, 0). Then XY is given by left multiplication by e and Y X is given by

left multiplication by f . Let x ∈ Mm×n(A) be the matrix corresponding to X and

y ∈Mn×m(A) be the matrix corresponding to Y . Then xy = e and yx = f . This proves

the “only if” part.

Suppose there exists x ∈Mm×n(A) and y ∈Mn×m(A) such that xy = e and yx = f .

Replacing x by exf and y by fye, we can assume that exf = x and fye = y. Let

X : An → Am and Y : Am → An be the A-linear maps that correspond to x and y

respectively. Then X maps fAn into eAm and Y maps eAm into fAn. Clearly, when

restricted to fAn and eAm, X and Y are inverses of each other. This proves the “if

part”. This completes the proof. 2

In view of Prop. 11.1, the semigroup V(A) can be described as follows. For n ≥ 1,

let En(A) be the set of idempotents in Mn(A). Set

M∞(A) : =
∞⋃
n=1

Mn(A)

E∞(A) : =
∞⋃
n=1

En(A).

Define an equivalence relation on E∞(A) as follows: For e ∈ Em(A) and f ∈ En(A),

we say e ∼ f if there exist x ∈ Mm×n(A) and y ∈ Mn×m(A) such that xy = e and

yx = f . Then V(A) = E∞(A)/ ∼. Moreover the addition operation is as follows. For

e, f ∈ E∞(A),

e⊕ f =

[
e 0

0 f

]
.

In a C∗-algebra, we can replace idempotents by projections and the equivalence re-

lation then becomes Murray-von Neumann equivalence. Let A be a unital C∗-algebra.

For n ≥ 1, let Pn(A) be the set of projections in Mn(A). Set

P∞(A) :=
∞⋃
n=1

Pn(A).

Let p ∈ Pm(A) and q ∈ Pn(A) be given. We say that p and q are Murray-von Neumann

equivalent if there exists a partial isometry u ∈Mn×m(A) such that u∗u = p and uu∗ = q.
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Exercise 11.2 Let p ∈ Pm(A) be given. Show that p is Murray-von Neumann equivalent

to

[
p 0

0 0n

]
.

Proposition 11.2 Let A be a unital C∗-algebra.

(1) Let e ∈ E∞(A) be given. Then there exists p ∈ P∞(A) such that e ∼ p.

(2) Let p, q ∈ P∞(A) be given. Then p ∼ q if and only if p and q are Murray-von

Neumann equivalent.

Proof. Let e ∈ En(A) be given. Without loss of generality, we can assume that n = 1.

Represent A faithfully as bounded operators on a Hilbert space H in a unital fashion.

Let p be the orthogonal projection onto Ran(e) = Ker(1 − e). Decompose H as H :=

Ran(p)⊕Ker(p). With respect to this decomposition, e has the following matrix form

e :=

[
1 x

0 0

]
.

Set z := 1 + (e − e∗)(e∗ − e). Then z is invertible in A. A simple matrix calculation

implies that

ee∗z−1 =

[
1 + xx∗ 0

0 0

][
(1 + xx∗)−1 0

0 (1 + x∗x)−1

]
=

[
1 0

0 0.

]

Hence p = ee∗z−1. This implies in particular that p ∈ A. Let x = e and y = p. Again a

direct matrix calculation implies that xy = p and yx = e. Hence e ∼ p and the proof of

(1) is complete.

Let p, q ∈ P∞(A) be given. Suppose p ∼ q. By adding zeros along the diagonal, we

can assume that p and q are of the same size. Again without loss of generality, we can

assume p, q ∈ A. Let x, y ∈ A be such that xy = p and yx = q. Replacing x by pxq

and y by qyp, if necessary, we can assume that pxq = x and qyp = y. Consequently

y : pH → qH and x : qH → pH are inverses of each other. Also y∗ maps qH to pH
and x∗ maps pH to qH. Hence y∗y : pH → pH is invertible. Moreover y∗y ∈ pAp.

Hence there exists r ∈ pAp such that (y∗y)
1
2 r = r(y∗y)

1
2 = p. Set u := yr. Note that
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y = u(y∗y)
1
2 . Clearly, u∗u = p and uu∗ ≤ q. Calculate as follows to observe that

q = qq∗

= (yx)(x∗y)

≤ ||x||2yy∗

= ||x||2u(y∗y)
1
2 (y∗y)

1
2y∗

≤ ||x||2||y||2uu∗.

Therefore q ≤ uu∗. Consequently, uu∗ = q. Hence p and q are Murray-von Neumann

equivalent. This completes the proof. 2.

Grothendieck construction: The Grothendieck construction allows us to construct

an abelian group out of the semigroup V(A). Let (R,+) be an abelian semigroup with

identity 0. Define an equivalence on R × R as follows: for (a, b), (c, d) ∈ R × R, we

say (a, b) ∼ (c, d) if there exists e ∈ R such that a + d + e = b + c + e. Then ∼ is an

equivalence relation on R × R. Denote the set of equivalence classes by G(R). Then

G(R) becomes an abelian group with the addition defined as

[(a, b)] + [(c, d)] = [(a+ c, b+ d)].

For any a ∈ R, [(a, a)] represents the identity element and the inverse of [(a, b)] is [(b, a)].

For a ∈ R, let [a] := [(a, 0)]. With this notation,

G(R) = {[a]− [b] : a, b ∈ R}.

Note that [a] = [b] if and only if a+ c = b+ c for some c ∈ R.

Let A be a unital algebra over C. The Grothendieck group G(V(A)) is denoted

K00(A). Note that

K00(A) = {[p]− [q] : p, q ∈ E∞(A)}.

Also [p] = [q] if and only if there exists r ∈ E∞(A) such that

[
p 0

0 r

]
∼

[
q 0

0 r

]
.

Let φ : A→ B be a unital homomorphism. For n ≥ 1, let φ(n) : Mn(A)→Mn(B) be

the amplification of φ, i.e.

φ(n)((aij)) = (φ(aij)).

To save notation, we denote φ(n) again by φ. A moment’s reflection with definitions

reveal that there exists a unique homomorphism denoted K00(φ) : K00(A) → K00(B)

such that

K00(φ)([p]− [q]) = [φ(p)]− [φ(q)].
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In short, K00 is a covariant functor from the category of unital algebras to the category

of abelian groups.

Remark 11.3 Let A be a unital C∗-algebra.

(1) Let p, q ∈ A be projections such that pq = 0. Then [p+ q] = [p] + [q]. For if we set

u := (p, q) then u∗u =

[
p 0

0 q

]
and uu∗ = p+ q.

(2) Let p, q ∈ Pn(A) be given. Then [p] = [q] in K00(A) if and only if there exists

m ≥ 1 such that

[
p 0

0 1m

]
is Murray-von Neumann equivalent to

[
q 0

0 1m

]
The “if part” is clear. For the ”only if” part, suppose [p] = [q] in K00(A). Then

there exists r ∈ Pm(A) such that p⊕ r ∼ q ⊕ r. Note that

p⊕ 1m ∼ p⊕ (r + 1− r)
∼ p⊕ (r ⊕ (1− r))
∼ (q ⊕ r)⊕ (1− r)
∼ q ⊕ (r + 1− r)
∼ q ⊕ 1m.

Exercise 11.3 (1) Show that K00(C) is isomorphic to Z and [1] forms a Z-basis for

K00(C).

(2) Let n ≥ 1. Show that K00(Mn(C)) = Z. Let p be a minimal projection in Mn(C).

Show that [p] is a Z-basis for K00(Mn(C)).

(3) LetH be an infinite dimensional separable Hilbert space. Show that K00(B(H)) = 0.

Exercise 11.4 Let A1 and A2 be unital algebras and set A := A1 ⊕ A2. Show that the

map K00(π1)⊕K00(π2) : K00(A)→ K00(A1)⊕K00(A2) is an isomorphism.

Next we define K0 for a C∗-algebra. Let A be a C∗-algebra (unital or non-unital).

Set A+ := {(a, λ) : a ∈ A, λ ∈ C}. The addition and scalar multiplication on A+ are

defined co-ordinate wise. The multiplication rule is given by

(a, λ)(b, µ) = (ab+ λb+ µa, λµ).
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Let ε : A+ → C be the map defined by ε(a, λ) = λ. Let s : A+ → A+ be defined by

s(a, λ) = (0, λ). The map s is called the “scalar map” as it remembers only the scalar

part. We denote the amplifications of ε and s by ε and s itself.

Define

K0(A) := Ker(K00(ε) : K00(A
+)→ K00(C) = Z).

Proposition 11.4 (The standard picture) Let A be a C∗-algebra. Then

K0(A) = {[p]− [s(p)] : p ∈ P∞(A+)}.

Proof. It is clear that for p ∈ P∞(A+), [p] − [s(p)] ∈ K0(A). Let x ∈ K0(A) be

given. Write x = [p] − [q] with p, q projections of same size say of size n. The fact

that x ∈ K00(ε) implies that ε(p) and ε(q) are of same rank. Choose a scalar unitary u

such that ε(p) = uε(q)u∗. Replacing q by uqu∗, we can assume that x = [p] − [q] with

ε(p) = ε(q). Set e :=

[
p 0

0 1− q

]
and f :=

[
0 0

0 1

]
. Then x = [e] − [f ]. Also note that

[s(e)] = [s(p)] + [1n − s(q)] = [1n] = [f ]. Therefore x = [e] − [s(e)]. This completes the

proof. 2

Proposition 11.5 Let A be a unital C∗-algebra. Then K0(A) is isomorphic to K00(A).

Proof. Note that the map A+ 3 (a, λ) → (a + λ1A, λ) ∈ A ⊕ C is an isomorphism.

With respect to this isomorphism, the map ε becomes the second projection. The result

follows immediately from the previous exercise. 2.

K0 as a functor: Let φ : A→ B be a ∗-algebra homomorphism. The map φ induces

a map φ+ : A+ → B+ which is defined as

φ+((a, λ)) = (φ(a), λ).

Note that εB ◦ φ+ = εA. Hence K00(εB) ◦K00(φ
+) = K00(εA). Therefore K00(φ

+) maps

K0(A) to K0(B). We denote the restriction of K00(φ
+) to K0(A) by K0(φ). Thus K0

is a functor from the category of C∗-algebras to the category of abelian groups. The

functor K0 is stable, homotopy invariant, half-exact and split-exact. We explain this in

what follows.

Stability: Let A be a C∗-algebra and p be a minimal projection of Mn(C). Let

ω : A→Mn(A) = A⊗Mn(C) be defined by

ω(a) := a⊗ p.
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Then K0(ω) : K0(A) → K0(Mn(A)) is an isomorphism. The reason is a matrix with

entries being matrices over A is again a matrix with entries in A. We omit the proof and

refer the reader to [13].

Homotopy invariance: Let A and B be C∗-algebras and φ, ψ : A → B be ∗-
homomorphisms. We say that φ and ψ are homotopy equivalent if there exists a family

of ∗-homomorphisms φt : A→ B for t ∈ [0, 1] such that

(1) for a ∈ A, the map [0, 1] 3 t→ φt(a) ∈ B is norm continuous, and

(2) φ0 = φ and φ1 = ψ.

The homotopy invariance of K0 implies that if φ and ψ are two homotopy equivalent

∗-homomorphisms then K0(φ) = K0(ψ). A moment’s thought reveals that this amounts

to proving the next lemma.

Lemma 11.6 Let e, f ∈ A be such that e and f are projections. Suppose that ||e−f || <
1. Then e and f are Murray-von Neumann equivalent.

Proof. Let x := ef . Note that ||x∗x− f || = ||f(e− f)f || < 1. Hence x∗x is invertible in

fAf . Choose r ∈ fAf such that r(x∗x)
1
2 = (x∗x)

1
2 r = f . Set u := xr. Then u∗u = f .

Since eu = u, it follows that uu∗ ≤ e. Represent A faithfully on a Hilbert space, say

H. Suppose that uu∗ is a proper subprojection of e. Then there exists ξ ∈ H such that

eξ = ξ 6= 0 but u∗ξ = 0. Hence rx∗ξ = 0. Note that x∗ξ ∈ Ran(f) and r is 1-1 on the

range space of f . Hence x∗ξ = 0, i.e. feξ = 0. Calculate as follows to observe that

||ξ|| = ||e2ξ − feξ||
= ||(e− f)eξ||
< ||eξ|| = ||ξ||

which is a contradiction. Hence uu∗ = e. This completes the proof. 2

Two C∗-algebras A and B are said to be homotopy equivalent if there exists ∗-
homomorphisms φ : A → B and ψ : B → A such that φ ◦ ψ and ψ ◦ φ are homotopy

equivalent to the identity homomorphisms. As an example, consider A := C[0, 1] and

B := C. Define ε : A → B by ε(f) = f(0) and σ : B → A by σ(λ) = λ. Then, clearly

ε ◦ σ is identity and σ ◦ ε is homotopy equivalent to the identity.

Exercise 11.5 Suppose A and B are homotopy equivalent. Show that K0(A) and K0(B)

are isomorphic. Conclude that K0(C(X)) = Z for a compact contractible space X.
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The next important property of K0 is that it is half-exact and sends split exact

sequences to split exact sequences.

Proposition 11.7 Let 0 −→ I −→ A
π−→ B −→ 0 be a short exact sequence of C∗-

algebras. Then the sequence

K0(I) −→ K0(A)
K0(π)−→ K0(B)

is exact in the middle.

Proof. Let x := [p] − [s(p)] ∈ K0(I) be given. Since π+(p) = π+(s(p)), it follows that

x ∈ Ker(K0(π)). Let x ∈ Ker(K0(π)) be given. Write x := [p] − [s(p)] with p a

projection in Mn(A+). Replacing p by

[
p 0

0 1m

]
for large m, we can assume that π+(p)

and s(π+(p)) are Murray-von Neumann equivalent.

Let v be a partial isometry in Mn(B+) be such that v∗v = π+(p) and vv∗ = s(π+(p)).

Let U :=

[
v 0

0 v∗

]
. Note that U

[
π+(p) 0

0 0

]
U∗ =

[
s(π+(p)) 0

0 0

]
. Thus, by replacing

p by

[
p 0

0 0

]
, we can assume that π+(p) And s(π+(p)) are unitarily equivalent. Let

a ∈Mn(A+) be a contraction such that π+(a) = U . Set

V :=

[
a

√
1− aa∗

−
√

1− a∗a a∗.

]

Then V is a unitary and π+(V ) =

[
U 0

0 U∗

]
.

Note that π+(V

[
p 0

0 0

]
V ∗) is a scalar matrix. This implies in particular that q :=

V

[
p 0

0 0

]
V ∗ lies in M2n(I+)). Also the scalar part of q is

[
s(p) 0

0 0

]
. Consequently,

x = [q]− [s(q)] ∈ Im(K0(i)) where i : I → A denotes the inclusion. This completes the

proof. 2

Next we show that K0 is split exact. Let

0 −→ I −→ A
π−→ B −→ 0

be a short exact sequence of C∗-algebras . We say that it is split exact if there exists a

∗-homomorphism µ : B → A such that π ◦ µ = idB. The map µ will then be called a

splitting.
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Proposition 11.8 Let 0 −→ I −→ A
π−→ B −→ 0 be a split exact sequence of C∗-

algebras with the splitting given by µ : B → A. Then the sequence

0 −→ K0(I) −→ K0(A)
K0(π)−→ K0(B) −→ 0

is a split exact sequence of abelian groups with the splitting given by K0(µ).

Proof. Let i : I → A be the inclusion. We have already shown the exactness at K0(A).

Since K0(π) ◦ K0(µ) = Id, it follows that K0(π) is onto. The only thing that requires

proof is that K0(i) is injective. To that effect, let x := [p]− [s(p)] ∈ K0(I) be such that

x ∈ Ker(K0(i)).

Arguing as in Prop. 11.7, we can assume that there exists a unitary u ∈ Mn(A+)

such that upu∗ = s(p). Set w := (µ+ ◦ π+(u∗))u. Note that π+(w) is a scalar. Hence

w ∈Mn(I+). Calculate as follows to observe that

wpw∗ := (µ+ ◦ π+)(u∗)upu∗(µ+ ◦ π+)(u)

= (µ+ ◦ π+)(u∗s(p)u)

= (µ+ ◦ π+)(p)

= s(p) (since p ∈ I+).

This proves that p and s(p) are Murray-von Neumann equivalent in Mn(I+). Hence

x = 0. This completes the proof. 2

Exercise 11.6 Let A1 and A2 be C∗-algebras and A := A1 ⊕A2. Denote the projection

of A onto Ai by πi. Show that the map K0(π1)⊕K0(π2) : K0(A)→ K0(A1)⊕K0(A2) is

an isomorphism.
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12 K1 of a C∗-algebra

In this section, we define another functor, denoted K1, from the category of C∗-algebras

to abelian groups. It shares the same functorial properties with K0. This is not a

coincidence as we will see later that K1 can indeed be defined in terms of K0. To define

K1, we work with invertible elements or unitaries.

Let A be a unital Banach algebra. Denote the set of invertible elements of Mn(A)

by GLn(A). Note that GLn(A) is a topological group. Denote the connected compo-

nent of 1n by GL0
n(A). Then GL0

n(A) is a normal subgroup of GLn(A). Consider the

quotient group GLn(A)/GL
(0)
n (A). There is a natural map from GLn(A)/GL0

n(A) →
GLn+1(A)/GL0

n+1(A) given by

x→

[
x 0

0 1

]
.

The group K̃1(A) is defined as the inductive limit lim
n
GLn(A)/GL0

n(A).

Exercise 12.1 Show that GLn(C) is connected. Conclude that K̃1(C) = 0.

Use the previous exercise to show that for x ∈ GLn(A), the elements

[
x 0

0 1

]
and

[
1 0

0 x

]
represent the same element in GLn+1(A)/GL0

n+1(A).

Proposition 12.1 Let A be a unital Banach algebra.

(1) We have K̃1(A) = {[x] : x ∈ GLn(A), n ≥ 1}.

(2) For x, y ∈ GLn(A), [x] = [y] if and only if there exists m and a path of invertibles

in GLn+m(A) connecting

[
x 0

0 1m

]
and

[
y 0

0 1m

]
.

(3) The group operation on K̃1(A) is given by [x]⊕ [y] :=

[
x 0

0 y

]
.

(4) The group K̃1(A) is abelian.

Proof. (1) and (2) are just rephrasing the definition of the inductive limit. Statements

(3) and (4) follows from Exercise 12.1. 2
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Remark 12.2 Let A be a unital C∗-algebra. Suppose a ∈ A is invertible. Then u :=

a|a|−1 is a unitary. Note that (a|a|−t)t∈[0,1] is a path of invertible elements connecting a

to u. Using this it is routine to see that in the definition of K̃1(A), we could have taken

unitaries in place of invertible elements. We usually work with unitaries in the case of

C∗-algebras.

We denote the set of unitaries in Mn(A) by Un(A) and the connected component of

1n by U0
n(A). For unitaries u, v ∈ Un(A), we write u ∼ v if u and v represent the same

element in Un(A)/U0
n(A).

It is clear that A → K̃1(A) is a functor from the category of unital C∗-algebras to the

category of abelian groups.

Exercise 12.2 Let A1 and A2 be unital C∗-algebras and A := A1 ⊕ A2. Denote the

projection of A onto Ai by πi. Show that the map K̃1(π1)⊕ K̃1(π2) : K̃1(A)→ K̃1(A1)⊕
K̃1(A2) is an isomorphism.

For any C∗-algebra A, define K1(A) := K̃1(A
+). For unital C∗-algebras, we have

A+ = A ⊕ C. Since K̃1(C) = 0, it follows that K1(A) = K̃1(A). Also K1 is a functor.

If φ : A → B is a ∗-homomorphism then there exists a unique group homomorphism

K1(φ) : K1(A)→ K1(B) such that

K1(φ)([u]) = [φ+(u)].

Next we discuss the functorial properties of K1.

Stability: Let A be a C∗-algebra and p be a minimal projection in Mn(C). Let

ω : A→ A⊗Mn(C) = Mn(A) be defined by

ω(a) := a⊗ p.

Then K1(ω) : K1(A) → K1(Mn(A)) is an isomorphism. As with K0, we omit its proof

and refer the reader to [13].

Homotopy invariance: Let A and B be C∗-algebras. Suppose φ : A → B and

ψ : A→ B are ∗-homomorphisms that are homotopy equivalent. Then K1(φ) = K1(ψ).

This is obvious since homotopy invariance is built in the definition of K1.

Lemma 12.3 Let A be a unital C∗-algebra and u ∈ A be a unitary. Then u ∈ U0(A)

if and only if there exists a1, a2, · · · , an ∈ A such that ai’s are self-adjoint and u =

eia1eia2 · · · eian.
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Proof. For a self-adjoint element a, (eita)t∈[0,1] is a path of unitaries connecting 1 to eia.

Thus the “if part” is clear. Suppose u ∼ 1. Let (ut)t∈[0,1] be a path of unitaries such

that u0 = 1 and u1 = u. By uniform continuity, there exists a partition 0 = t0 < t1 <

t2 < · · · < tn = 1 such that ||uti − uti−1
|| < 1. Set ui := uti .

We claim u1 is of the required form. Since ||u1 − 1|| < 1, it follows that −1 /∈ σ(u1).

Define a := −ilog(u1). Then u1 = eia. This proves the claim. Note that ||u∗1u2 − 1|| =

||u1 − u2|| < 1. Applying the above argument, we conclude that u∗1u2 is of the required

form. But u2 = u1u
∗
1u2. This proves that u2 is the required form. Proceeding this way,

we see that un = u is of the form required. This completes the proof. 2

Proposition 12.4 Let 0 −→ I −→ A
π−→ B −→ 0 be a short exact sequence of C∗-

algebras. Then the sequence

K1(I) −→ K1(A)
K1(π)−→ K1(B)

is exact in the middle.

Proof. Let i : I → A be the inclusion. Let [u] ∈ K0(I) be given. Then π+ ◦ i+(u) is a

scalar matrix. Consequently, [π+ ◦ i+(u)] = [1]. Hence Im(K1(i)) ⊂ Ker(K1(π)). Let

u ∈ Un(A+) be such that [π+(u)] = [1n]. Replacing u by

[
u 0

0 1m

]
for m sufficiently large,

we can assume that π+(u) ∼ 1n. Choose self-adjoint elements b1, b2, · · · , br ∈ Mn(B+)

such that

π+(u) = eib1eib2 · · · eibr .

Choose ai ∈Mn(A+) such that ai is self-adjoint and π+(ai) = bi. Set v := eia1eia2 · · · eiar .
Then π+(uv∗) = 1. This implies that there exists w ∈ Un(I+) such that uv∗ = i+(w).

Since [v] = 1, it follows that [u] = [uv∗] = K1(i)([w]). Hence Im(K1(i)) = Ker(K1(π)).

This completes the proof. 2

Proposition 12.5 Let 0 −→ I −→ A
π−→ B −→ 0 be a split exact sequence of C∗-

algebras with the splitting given by µ : B → A. Then the sequence

0 −→ K1(I) −→ K1(A)
K1(π)−→ K1(B) −→ 0

is a split exact sequence of abelian groups with the splitting given by K1(µ).

Proof. Let i : I → A be the inclusion. We have already shown the exactness at K1(A).

Since K1(π) ◦ K1(µ) = Id, it follows that K1(π) is onto. The only thing that requires

proof is that K1(i) is injective.

98



Let u ∈ Un(I+) be such that K1(i)([u]) = [1n]. By “amplifying u”, if necessary, we

can assume that i+(u) ∼ 1n. Let (wt)t∈[0,1] be a path of unitaries in Mn(A+) such that

w0 = 1n and w1 = i+(u). Set vt := (µ+ ◦ λ+)(w∗t )wt. Then π+(vt) = 1. Hence there

exists ut ∈ Un(I+) such that i+(ut) = wt. Note that (ut)t∈[0,1] is a path of unitaries in

Mn(I+) connecting 1n to xu where x is a scalar matrix. Hence [u] = [1n]. Therefore,

K1(i) is injective. This completes the proof. 2

Exercise 12.3 Let A1 and A2 be C∗-algebras and A := A1 ⊕A2. Denote the projection

of A onto Ai by πi. Show that the map K1(π1)⊕K1(π2) : K1(A)→ K1(A1)⊕K1(A2) is

an isomorphism.

99



13 Inductive limits and K-theory

An important property of K-theory that allows to compute the K-groups for a large

class of C∗-algebras, called AF-algebras, is that it preserves direct limits. The purpose

of this section is to explain this. The data that we require to define the inductive limit

of C∗-algebras is as follows.

Let (An)n≥1 be a sequence of C∗-algebras and φn : An → An+1 be a ∗-homomorphism.

The above data is usually given pictorially as follows:

A1
φ1−→ A2

φ2−→ A3 −→ · · ·

For m < n, let φn,m : Am → An be defined by φm,n := φn−1 ◦ φn−2 ◦ · · · ◦ φm. For

m = n, set φm,n = Id. Note that for ` ≤ m ≤ n,

φn,` = φn,m ◦ φm,`.

Let B := {(a, n) : a ∈ An, n ≥ 1}. Define an equivalence relation on B as follows.

For (a,m), (b, n) ∈ B, we say (a,m) ∼ (b, n) if there exists r, s such that m + r = s + n

and φm+r,m(a) = φn+s,n(b). Denote the set of equivalence classes by A∞. The set A∞
has a ∗-algebra structure where addition, scalar multiplication, multiplication and the

∗-structure are as follows.

[(a,m)] + [(b, n)] = [(φm+n,m(a) + φm+n,n(b),m+ n)]

λ[(a,m)] = [(λa,m)]

[(a,m)][(b, n)] = [(φm+n,m(a)φm+n,n(b),m+ n)]

[(a,m)]∗ = [(a∗,m)].

On A∞, define a C∗-seminorm as follows.

||[(a,m)]|| := lim
n→∞

||φm+n,m(a)||.

Mod out the null vectors and complete to get a genuine C∗-algebra which we denote by

A∞. Also A∞ is called the inductive limit of (An, φn).

Let in : An → A∞ be defined by in(a) := [(a, n)]. Note that in ◦ φn,m = im. This

implies in particular that in(An) is an increasing sequence of C∗-algebras. Moreover, the

union
⋃
n≥1 in(An) is dense in A∞.

Proposition 13.1 (The universal property) Keep the foregoing notation. Suppose

B is a C∗-algebra and there exists ∗-homomorphisms jn : An → B such that jn ◦ φn,m =

jm. Then there exists a unique ∗-algebra homomorphism φ : A∞ → B such that

φ(in(a)) = jn(a)
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for a ∈ An. Moreover A∞ is characterised by this property.

Proof. Left to the reader.

Remark 13.2 Inductive limits of systems indexed by a general directed set can be de-

fined. We have chosen to work with sequences for simplicity.

Exercise 13.1 Discuss inductive limits in the category of abelian groups. Formulate

and prove a universal property in this context.

The main theorem about inductive limits and K-theory is the following.

Theorem 13.3 Let (An, φn) be a directed system of C∗-algebras and let A∞ be the direct

limit. Then

Ki(A∞) = lim
n→∞

(Ki(An), Ki(φn))

for i = 0, 1.

The soul of the proof of the above theorem relies in the following two propositions. The

reader should convince herself that it is indeed so.

Proposition 13.4 Let A be a C∗-algebra. Suppose An is an increasing sequence of

C∗-subalgebras of A such that
⋃
n=1An is dense in A.

(1) Let e ∈ A be a projection. Then there exists a projection f ∈ Am for some m such

that e ∼ f .

(2) Let e, f ∈ Am be projections. Suppose e ∼ f in A. Then there exists n large such

that e ∼ f in Am+n.

Lemma 13.5 Suppose A is a C∗-algebra. Let U be a non-empty open subset of C. Then

E := {a ∈ A : spec(a) ⊂ U} is an open subset of A.

Proof. Let C be the complement of U and F be the complement of E. We show that

F is closed. Let an be a sequence in F such that an → a. Then there exists λn ∈ C

such that λn ∈ spec(an). Since (||an||) is bounded, it follows that λn is bounded. By

passing to a subsequence, we can assume that λn converges. Let λ := limn λn. Since C

is closed, λ ∈ C. Suppose a − λ is invertible. Since an − λn → a − λ, it follows that

an − λn is invertible for large n which is a contradiction. This forces that λ ∈ spec(a).

Hence a ∈ F . This proves that F is closed and hence the proof. 2
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Proof of Prop. 13.4. Let B :=
⋃
n≥1An. Suppose e ∈ A is a projection. Since

B is dense, there exists a ∈ B such that a = a∗, ||a2 − a|| < 1
4
, ||a − e|| < 1

2
and

spec(a) ⊂ U := (−1
4
, 1
4
)∪ (3

4
, 5
4
). Choose m such that a ∈ Am. Let h : U → R be defined

by

h(t) :=


0 if t ∈ (−1

4
, 1
4
),

1 if t ∈ (3
4
, 5
4
).

(13.9)

Set f := h(a). Clearly f is a projection in Am. Note that ||a − h(a)|| < 1
2
. Hence

||e − f || ≤ ||e − a|| + ||a − h(a)|| < 1. By Lemma 11.6, it follows that e and f are

Murray-von Neumann equivalent. This proves (1).

Let e, f ∈ Am be projections. Suppose that e ∼ f in A. Let u ∈ A be such that

u∗u = e and uu∗ = f . Choose a sequence un ∈ B such that un → u. Set vn := fune.

Then v∗nvn → e and vnv
∗
n → f . Note that vn ∈ B. Thus, there exists v ∈ B such that

||v∗v − e|| < 1, ||vv∗ − f || < 1 and fv = ve = v. Let n > m be such that v ∈ An.

Note that v∗v is invertible in eAne and vv∗ is invertible in fAnf . Let r ∈ eAne and

s ∈ fAnf be such that r(v∗v)
1
2 = e and s(vv∗)

1
2 = f . Set w := vr. Then w∗w = e.

We claim w = sv. To see this, note that v(v∗v)
1
2 = (vv∗)

1
2v. Multiply by r on the

right to deduce that v = ve = (vv∗)
1
2vr. Multiply on the left by s to deduce that

sv = s(vv∗)
1
2vr = fvr = vr. This proves the claim.

Calculate as follows to observe that

ww∗ = svv∗s

= s(vv∗)
1
2 (vv∗)

1
2 s

= f.

This proves that e and f are Murray-von Neumann equivalent in An. This completes

the proof. 2

Proposition 13.6 Let A be a unital C∗-algebra. Suppose An is an increasing sequence

of unital C∗-subalgebras of A such that
⋃
n=1An is dense in A.

(1) Let u ∈ A be a unitary element. Then there exists a unitary v ∈ Am for some m

such that u ∼ v.

(2) Let u, v ∈ Am be unitaries. Suppose u ∼ v in A. Then there exists n large such

that u ∼ v in Am+n.
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Proof. Let B :=
⋃∞
n=1An. Suppose u ∈ A is a unitary element. Since B is dense,

there exists a ∈ B such that ||u − a|| < 1. Choose m such that a ∈ Am. Note that

||1− u∗a|| < 1. Hence b := u∗a is invertible. Moreover (−∞, 0] is disjoint from spec(b).

Choose a holomorphic branch, say `, of the logarithm defined on C\(−∞, 0]. Set c := `(a)

where c is defined using the holomorphic functional calculus. Then (etc)t∈[0,1] is a path

of invertibles connecting 1 to b. This implies in particular that u ∼ a. Let v := a|a|−1.
Then u ∼ v and v is a unitary in Am. This proves (1).

Let u, v be unitaries in Am. Suppose w̃ := (wt) is a path of unitaries in A such that

w0 = u and w1 = v. Set

Ã : = C([0, 1], A)

Ãn : = C([0, 1], An).

We can view Ãn as a unital subalgebra of Ã. Note that
⋃∞
n=1 Ãn is dense in Ã. Think

of w̃ as an element in Ã. As in part (1), extract a path (at)t∈[0,1] of invertibles in An for

some n with n > m such that ||wt− at|| < 1 for every t ∈ [0, 1]. Arguing as in (1) in An,

we see that u = w0 ∼ a0 in An and v = w1 ∼ a1 in An. But a0 ∼ a1 in An. Therefore

u ∼ v in An. This completes the proof. 2

Let A be a C∗-algebra. We say that A is approximately finite dimensional, also called

an AF algebra, if there exists a sequence (An) of finite dimensional C∗-subalgebras of

A such that
⋃∞
n=1An is dense in A. Let in : An → An+1 be the inclusion. Then

A := limn→∞(An, in). Note that if A is a finite dimensional algebra then A is isomorphic

to Mn1(C) ⊕Mn2(C) ⊕ · · ·Mnr(C). Consequently, K0(A) = Zr and K1(A) = 0. Since

Ki preserves inductive limits, in principle, it is possible to compute the K-groups of an

AF-algebra. In particular, K1(A) = 0 for any AF-algebra. The reader should do the

following K-group computation.

(1) Let H be an infinite dimensional separable Hilbert space. Denote the algebra of

compact operators by K(H). Then K(H) is AF and K0(K(H)) = Z. Moreover, if

p is a minimal projection in K(H) then [p] is a Z-basis for K0(K(H)).

(2) Set An := M2n(C). Let φn : An → An+1 be defined by φn(A) :=

[
A 0

0 A

]
. The

inductive limit A∞ := limn→∞(An, φn) is called the CAR algebra. Then

K0(A∞) = Z[
1

2
] :=

{m
2n

: m ∈ Z, n ∈ N ∪ {0}
}
.
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(3) Let X := {0, 1}N be the Cantor set. Then C(X) is an AF-algebra. Its K-group is

given by K0(C(X)) =
⊕
n∈N

Z.

Exercise 13.2 Prove the following stability result for K-theory. Let K be the C∗-algebra

of compact operators on an infinite dimensional separable Hilbert space. Suppose p is a

minimal projection in K and A is a C∗-algebra. Let ω : A→ K⊗ A be defined by

ω(a) := p⊗ a.

Prove that Ki(ω) is an isomorphism.

Remark 13.7 One of the first significant results in the subject is the classification of

AF-algebras in terms of its K-theory. This was due to Elliot. Elliot’s theorem asserts

roughly that two AF-algebras are isomorphic if and only their K-theoretic invariants are

the same. For a precise statement, we refer the reader to [7].
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14 Six term exact sequence

An important computational tool that enables us to calculate the K-groups explicitly

is the six term exact sequence. We omit the proof altogether and merely explain the

consequences. Let

0 −→ I −→ A
π−→ B −→ 0

be an exact sequence of C∗-algebras. Then there exists maps ∂ : K1(B)→ K0(I), called

the index map, and σ : K0(B) → K1(I) which makes the following six term sequence

exact.

K0(I) // K0(A) // K0(B)

σ
��

K1(B)

∂

OO

K1(A)oo K1(I)oo

Moreover the maps ∂ and σ are “natural”.

The construction of the index map ∂, though tedious, is not that difficult. It is

explicitly described below. Let [u] ∈ K1(B) be given where u is a unitary in Mn(B+).

Choose a unitary V ∈ M2n(A+) such that π+(V ) =

[
u 0

0 u∗

]
. The justification for the

existence of such a unitary is given in Prop. 11.7. Then

∂([u]) =
[
V

(
1n 0

0 0

)
V ∗
]
−
[(1n 0

0 0

)]
.

The map ∂ defined above is well defined, i.e. it is independent of the various choices

made and makes the diagram exact at K1(B) and K0(I). The construction of σ is more

difficult and requires Bott periodicity.

The following is often used in applications.

Proposition 14.1 Let 0 −→ I −→ A
π−→ B −→ 0 be a short exact sequence of C∗-

algebras. Let u ∈ Mn(B+) be a unitary. Suppose there exists a partial isometry v ∈
Mn(A+) such that π+(v) = u. Then ∂([u]) = [1n − v∗v]− [1n − vv∗].

Proof. Let V :=

[
v 1− vv∗

1− v∗vv∗ v∗

]
. Then V is a unitary “lift” of

[
u 0

0 u∗

]
. Clearly,
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V

[
1n 0

0 0

]
V ∗ =

[
vv∗ 0

0 1− v∗v

]
. Calculate as follows to observe that

∂([u]) =
[(vv∗ 0

0 1− v∗v

)]
−
[(1− vv∗ + vv∗ 0

0 0

)]
= [vv∗] + [1− v∗v]− [1− vv∗]− [vv∗]

= [1− v∗v]− [1− vv∗].

This completes the proof. 2

As a first application, we deduce that K1 can be defined in terms of K0 and K0

can be defined in terms of K1. We say a C∗-algebra B is contractible if the iden-

tity homomorphism is homotopy equivalent to the zero map. If B is contractible then

K0(B) = K1(B) = 0.

Let A be a C∗-algebra. Denote the C∗-algebra of continuous A-valued functions on

[0, 1] by C([0, 1], A). The norm here is the supremum norm. Set

CA : = {f ∈ C([0, 1], A) : f(0) = 0}
SA : = {f ∈ CA : f(1) = 0}.

The C∗-algebra CA is called the cone over A and SA is called the suspension over A.

Note that A → CA and A → SA are functors from the category of C∗-algebras to

C∗-algebras.

Lemma 14.2 The cone CA is contractible. Hence K0(CA) = 0 and K1(CA) = 0.

Proof. For t ∈ [0, 1], let εt : CA→ CA be defined by εt(f)(s) = f(st). Then (εt)t∈[0,1] is

a homotopy of ∗-homomorphisms connecting the zero map with the identity map. This

completes the proof. 2.

Corollary 14.3 For any C∗-algebra A, K1(A) ∼= K0(SA) and K0(A) ∼= K1(SA).

Proof. Let ε : CA → A be defined by ε(f) = f(1). Then we have the following exact

sequence

0 −→ SA −→ CA
ε−→ A −→ 0.

The conclusion is immediate if we apply the six term exact sequence and the fact that

K0(CA) = K1(CA) = 0. 2
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Remark 14.4 Actually, we have cheated a lot. In fact, the isomorphism K0(A) ∼=
K1(SA) is needed apriori to define the map σ in the six term sequence. After first

proving this, σ is defined as the composite of the following maps

K0(B) ∼= K1(SB)
∂−→ K0(SI) ∼= K1(I).

The isomorphism K0(A) ∼= K1(SA) is called the Bott periodicity in K-theory. We will

discuss Cuntz’ proof of it in the next two sections.

Exercise 14.1 (1) Note that for A = C, SA := C0(R). Conclude that K0(C0(R)) = 0

and K1(C0(R)) = Z.

(2) Let ε : C(T)→ C be the evaluation map at 1. Then the short exact sequence

0 −→ C0(R) −→ C(T)
ε−→ C −→ 0

is split exact. Conclude that K0(C(T)) ∼= Z and K1(C(T)) ∼= Z. Show that [1]

forms a Z-basis for C(T).

(3) Compute the K-groups of C(S2) where S2 is the unit sphere in R3.

As an application of the six term sequence, we compute the K-groups of the Toeplitz

algebra. Recall that the Toeplitz algebra T is the universal C∗-algebra generated by

an isometry v. Let z ∈ C(T) be the generating unitary. Then there exists a unique

surjective ∗-homomorphism π : T → C(T) such that π(v) = z. Also, the kernel of π is

isomorphic to the C∗-algebra of compact operators, denoted K, on a separable infinite

dimensional Hilbert space. Let i : K → T be the inclusion. We apply the six term

sequence to the following exact sequence.

0 −→ K −→ T π−→ C(T) −→ 0

Consider the six term exact sequence

K0(K) // K0(T ) // K0(C(T))

σ
��

K1(C(T))

∂

OO

K1(T )oo K1(K)oo

We claim ∂([z]) = −[p] where p is a rank one projection in K. Since π(v) = z and

v is an isometry, it follows from Prop. 14.1 that ∂([z]) = [1 − v∗v] − [1 − vv∗] = −[p].

Note that [p] is a Z-basis for K0(K). Also, we know that K1(C(T)) ∼= Z. Hence [z]
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is a Z-basis for K1(C(T)). Therefore, ∂ is an isomorphism. Consequently, K0(i) = 0.

This implies that Ker(K0(π)) = 0. Note that K1(K) = 0. This implies that σ is the

zero map. Hence Im(K0(π)) = K0(C(T)). Consequently, K0(π) is an isomorphism.

Therefore K0(T ) is isomorphic to Z and [1] is a Z-basis for K0(T ). Note that K1(K) = 0

and Im(K1(π)) = Ker(∂) = 0. Thus we have the short exact sequence

0 −→ K1(T ) −→ 0.

As a consequence, K1(T ) = 0.
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15 Quasi-homomorphisms

We conclude these notes by discussing Cuntz’ proof of Bott periodicity. An important

technical tool that we need is the notion of quasi-homomorphisms. This also offers a

first glimpse of KK-theory. The notion of quasi-homomorphisms is due to Cuntz. We

know that homomorphisms between C∗-algebras induce maps at the K-theory level. The

important observation due to Cuntz is that quasi-homorphisms, a sort of a generalised

morphism between C∗-algebras, too induce maps at the K-theory level.

Let A and J be C∗-algebras. By a quasi-homomorphism from A → J , we mean

the following data. There exists a C∗-algebra E which contains J as an ideal and two

∗-homomorphisms φ+, φ− : A → E such that for a ∈ A, φ+(a) − φ−(a) ∈ J . We simply

say that

φ := (φ+, φ−) : A→ E D J

is a quasi-homomorphism from A to J to mean the above data. Strictly speaking, there

exists an embedding i : J → E such that i(J) is an ideal in E . As usual, we suppress the

embedding to be economical with notation.

Example 15.1 Suppose σ : A → J is a homomorphism. Then (σ, 0) : A → J D J is

a quasi-homomorphism. More generally, suppose σ1, σ2 : A → J are homomorphisms.

Then σ := (σ1, σ2) : A→ J D J is a quasi-homomorphism.

Let φ := (φ+, φ−) : A→ E D J be a quasi-homomorphism. Set

Aφ := {(a, x) ∈ A⊕ E : φ+(a) ≡ x mod J}.

Let π : Aφ → A be defined by π(a, x) = a. Then Ker(π) := {(0, x) : x ∈ J} which we

identify with J . Let j : J → Aφ be the embedding j(x) = (0, x). Define φ̃+ : A → Aφ

and φ̃− : A→ Aφ by

φ̃+(a) = (a, φ+(a))

φ̃−(a) = (a, φ−(a)).

Then we have the following split exact sequence of C∗-algebras with the splitting given

by either φ̃+ or φ̃−.

0 −→ J −→ Aφ
π−→ A −→ 0

Hence Ki(j) is injective. Note that Ki(φ̃+) − Ki(φ̃−) ∈ Ker(Ki(π)) = Im(Ki(j)).

For i = 0, 1, we define K̂i(φ) : Ki(A)→ Ki(J) by the formula

K̂i(φ) := Ki(j)
−1 ◦

(
Ki(φ̃+)−Ki(φ̃−)

)
.

109



Next we derive a few basic properties about quasi-homomorphisms.

Proposition 15.2 Let σ := (σ1, σ2) : A → J D J be a quasi-homomorphism. Then

K̂i(σ) = Ki(σ1)−Ki(σ2).

Proof. Note that Aσ = A ⊕ J . Then we can identify Ki(Aσ) with Ki(A) ⊕ Ki(J).

Once this identification is made, Ki(j)
−1 on Im(Ki(j)) is nothing but Ki(pr2) where

pr2 : A⊕ J → J is the second projection. The conclusion is now obvious. 2

In view of the above proposition, for a quasi-homomorphism φ, we simply denote

K̂i(φ) by Ki(φ). Next we discuss how to precompose a quasi-homomorphism with a

homomorphism. Let φ := (φ+, φ−) : A → E D J be a quasi-homomorphism. Suppose

ε : B → A is a homomorphism. Then ψ := (ψ+, ψ−) : B → E D J is a quasi-

homomorphism where ψ+ = φ+ ◦ ε and ψ− = φ− ◦ ε.

Proposition 15.3 With the foregoing notation, we have Ki(ψ) = Ki(φ) ◦Ki(ε).

Proof. Let jB : J → Bψ and jA : J → Aφ be the embeddings. Define η : Bψ → Aφ by

η(b, x) := (ε(b), x).

Note that η ◦ jB = jA, η ◦ ψ̃+ = φ̃+ ◦ ε and η ◦ ψ̃− = φ̃− ◦ ε. Let y ∈ Ki(B) given. Choose

x ∈ Ki(J) such that Ki(jB)x = (Ki(ψ̃+)−Ki(ψ̃−))y. Then Ki(ψ)y = x.

To show that Ki(φ) ◦ Ki(ε)y = x, it suffices to show that Ki(jA)x = (Ki(φ̃+) −
Ki(φ̃−))Ki(ε)y. Calculate as follows to observe that

Ki(jA)(x) = Ki(η)Ki(jB)x

= Ki(η)Ki(ψ̃+)y −Ki(η)Ki(ψ̃−)y

= Ki(φ̃+ ◦ ε)y −Ki(φ̃− ◦ ε)y
= (Ki(φ̃+)−Ki(φ̃−))Ki(ε)y.

This completes the proof. 2

Post composing a quasi-homomorphism with a homomorphism is a bit tricky. The

data we need is the following. Suppose φ := (φ+, φ−) : A → E D J is a quasi-

homomorphism. Let ε
′

: J → J
′

be a ∗-homomorphism. To define ε
′ ◦ φ, we need

an extension of ε
′
. Suppose there exists a C∗-algebra E ′ containing J

′
as an ideal such

that ε
′
extends to a map from E → E ′ . Denote an extension again by ε

′
. Set ψ+ := ε

′ ◦φ+

and ψ− := ε
′ ◦ φ−. Then ψ := (ψ+, ψ−) : A→ E ′ D J

′
is a quasi-homomorphism.

Proposition 15.4 With the foregoing notation, we have Ki(ψ) = Ki(ε
′
) ◦Ki(φ).
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Proof. Let j : J → Aφ and j
′
: J
′ → Aψ be the embeddings. Let η : Aφ → Aψ be defined

by η(a, x) := (a, ε
′
(x)). Then η ◦ φ̃+ = ψ̃+ and η ◦ φ̃− = ψ̃−. Also η ◦ j = j

′ ◦ ε′ .
Let y ∈ Ki(A) be given. Choose x ∈ Ki(J) such that Ki(φ̃+)y −Ki(φ̃−)y = Ki(j)x.

To prove Ki(ψ)y = Ki(ε
′
)Ki(φ)y, it suffices to show that Ki(j

′
)Ki(ε

′
)x = Ki(ψ̃+)y −

Ki(ψ̃−)y. Calculate as follows to observe that

Ki(j
′
)Ki(ε

′
)x = Ki(η)Ki(j)x

= Ki(η)(Ki(φ̃+)y −Ki(η)Ki(φ̃−)y

= Ki(ψ̃+)y −Ki(ψ̃−)y.

This completes the proof. 2

For t ∈ [0, 1], let φt := (φt+, φ
t
−) : A → E D J be a family of quasi-homomorphisms.

We say that (φt)t∈[0,1] is a homotopy if (φt+)t∈[0,1] and (φt−)t∈[0,1] are homotopy of ∗-
homomorphisms.

Proposition 15.5 Let φt := (φt+, φ
t
−) : A→ E D J be a homotopy of ∗-homomorphisms.

Then Ki(φ
t) is independent of t.

Proof. Let Ẽ := C([0, 1], E) and J̃ := C([0, 1], J). Define φ̃+ : A→ Ẽ by the formula

φ̃+(a)(t) := φt+(a).

Similarly define φ̃−. Then φ̃ := (φ̃+, φ̃−) : A → Ẽ D J̃ is a quasi-homomorphism. For

t ∈ [0, 1], let εt : Ẽ → E be the evaluation at t. By Prop. 15.4, Ki(φ
t) = Ki(εt) ◦Ki(φ̃).

However, Ki(εt) is constant by the homotopy invariance of K-theory. Hence the proof.

2

Next we discuss the additive property of K-theory. Let φ, ψ : A → B be ho-

momorphisms. We say φ and ψ are othogonal and write φ ⊥ ψ if for x, y ∈ A,

φ(x)ψ(y) = 0. Note that if φ ⊥ ψ then φ + ψ : A → B is a ∗-homomorphism.

Let φ := (φ+, φ−) : A → E D J and ψ := (ψ+, ψ−) : A → E D J be two quasi-

homomorphisms. We say that φ and ψ are orthogonal if φ+ ⊥ ψ+ and φ− ⊥ ψ−. If

φ and ψ are orthogonal, then clearly φ + ψ := (φ+ + ψ+, φ− ◦ ψ−) : A → E D J is a

quasi-homomorphism.

Proposition 15.6 Suppose φ := (φ+, φ−) : A→ E D J and ψ := (ψ+, ψ−) : A→ E D J

are orthogonal quasi-homomorphisms. Then Ki(φ+ ψ) = Ki(φ) +Ki(ψ).

Lemma 15.7 Let A be a C∗-algebra. Let i1, i2 → A→ A⊕A be defined by i1(a) = (a, 0)

and i2(a) = (0, a). Then Ki(i1 + i2) = Ki(i1) +Ki(i2).
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Proof. Let π1, π2 : A ⊕ A → A be the first and the second projections respectively. We

know that Ki(π1)⊕Ki(π2) : Ki(A⊕A)→ Ki(A)⊕Ki(A) is an isomorphism. To verify

the equality Ki(i1 + i2) = Ki(i1)+Ki(i2), it suffices to verify the following two equalities.

Ki(π1) ◦Ki(i1 + i2) = Ki(π1) ◦Ki(i1) +Ki(π1) ◦Ki(i2)

Ki(π2) ◦Ki(i1 + i2) = Ki(π2) ◦Ki(i1) +Ki(π2) ◦Ki(i2)

This verification is obvious. 2.

Proof of Prop. 15.6: Let Σ+ : A⊕A→ E D J be defined by Σ+(a, b) = φ+(a)+ψ+(b).

Similarly define Σ−. Then Σ := (Σ+,Σ−) : A → E D J is a quasi-homomorphism. Let

∆ : A→ A⊕A be defined by ∆(a) = (a, a). Then ∆ = i1 + i2. Note that φ+ψ := Σ◦∆.

Clearly φ = Σ ◦ i1 and ψ = Σ ◦ i2. Calculate as follows to observe that

Ki(φ+ ψ) = Ki(Σ) ◦Ki(∆)

= Ki(Σ) ◦ (Ki(i1) +Ki(i2))

= Ki(Σ) ◦Ki(i1) +Ki(Σ) ◦Ki(i2)

= Ki(Σ ◦ i1) +Ki(Σ ◦ i2)
= Ki(φ) +Ki(ψ).

This completes the proof. 2
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16 Bott periodicity

In this section, we discuss Cuntz’ proof of Bott periodicity. The main result in Cuntz’

proof is to first compute the K-theory of the Toeplitz algebra. We had already computed

the K-groups of the Toeplitz algebra assuming Bott periodicity. Here we compute it

without this assumption. Recall that the Toeplitz algebra T is the universal C∗-algebra

generated by a single isometry v.

We need to use tensor products of C∗-algebras, a delicate topic, in what follows.

The reader should consult [4] for a detailed treatment. We ask the reader to accept

the statements made here in good faith. Let A1 and A2 be C∗-algebras. Consider

the algebraic tensor product A1 ⊗alg A2. Then A1 ⊗alg A2 is a ∗-algebra where the

multiplication and ∗-structure are given by

(a1 ⊗ a2)(b1 ⊗ b2) = a1b1 ⊗ a2b2
(a⊗ b)∗ = a∗ ⊗ b∗.

Let || || be a C∗-norm on A1 ⊗alg A2. The norm || || is said to be a cross-norm on

A1 ⊗alg A2 if ||a⊗ b|| = ||a||||b||. It is true that there exists C∗-algebras A1 and A2 such

that A1 ⊗alg A2 admits more than one C∗ cross norm.

Definition 16.1 A C∗-algebra A is called nuclear if the following holds. For every C∗-

algebra B, there is only one C∗ cross norm on the algebraic tensor product A⊗alg B. If

A is nuclear then A⊗B denotes the completion of A⊗alg B with respect to any C∗ cross

norm

Exercise 16.1 Show that Mn(C) is nuclear.

Spatial tensor product: It is always possible to define a C∗-cross norm as follows.

Let A1 and A2 be two C∗-algebras. Let π1 : A1 → B(H1) and π2 : A2 → B(H2) be

faithful representations. Define π1 ⊗ π2 : A1 ⊗alg A2 → B(H1 ⊗H2) by the equation

(π1 ⊗ π2)(a1 ⊗ a2) := π1(a1)⊗ π2(a2).

Then π1 ⊗ π2 is a ∗-homomorphism and is injective. For x ∈ A1 ⊗alg A2, let ||x|| :=

||π1 ⊗ π2(x)||. Then || || is a norm on A1 ⊗alg A2. It is a non-trivial fact that || || is

independent of the chosen faithful representations π1 and π2. This norm on A1 ⊗alg A2

is called the spatial norm and the completion of A1 ⊗alg A2 is called the spatial tensor

product. The reader can assume that the tensor product of C∗-algebras that we consider

is always the spatial one without much loss.
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Exercise 16.2 Let D be a C∗-algebra. Show that the map A→ A⊗D is a functor from

the category of C∗-algebras to the category of C∗-algebras. Here the tensor product is the

spatial one.

We need the following facts regarding nuclear C∗-algebras and tensor products.

1. Commutative C∗-algebras are nuclear.

2. Inductive limits of nuclear C∗-algebras are nuclear.

3. Let 0→ I → A→ B → 0 be a short exact sequence. If I and B are nuclear then

A is nuclear.

4. Let 0 → I → A → B → 0 be a short exact sequence of nuclear C∗-algebras. If D

is a C∗-algebra then the sequence

0→ D ⊗ I → D ⊗ A→ D ⊗B → 0

is exact.

Exercise 16.3 Use the above facts to conclude that the Toeplitz algebra is nuclear.

Exercise 16.4 Let X be locally compact Hausdorff topological space and A be a C∗-

algebra. Assume that C0(X) is nuclear. Use this assumption to show that C0(X)⊗A ∼=
C0(X,A).

Hint: The map C0(X) ⊗alg A 3 f ⊗ a → f.a ∈ C0(X,A) is an embedding. Here f.a

stands for the map which sends x to f(x)a.

Let us return to the discussion on Bott periodicity. Let q : T → C be defined by

q(v) = 1 and j : C→ T be defined by j(1) = 1. The map q exists by Coburn’s theorem.

We claim that Ki(q) : Ki(T ) → Ki(C) is an isomorphism with inverse given by Ki(j).

Since q ◦ j = id, it follows that Ki(q) ◦Ki(j) = id.

Let p = 1− vv∗. Let ω : T → K ⊗ T be defined by ω(x) = p⊗ x. Since Ki(ω) is an

isomorphism, to show that Ki(j)◦Ki(q) = Id, it suffices to show that Ki(ω)◦Ki(j ◦q) =

Ki(ω). Let σ1 := ω ◦ j ◦ q and σ2 = ω. Then

σ1(v) = p⊗ 1

σ1(v) = p⊗ v.

We need to show that Ki(σ1) = Ki(σ2).
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Exercise 16.5 Prove the following version of Coburn’s theorem. Let A be a C∗-algebra.

Suppose w is a partial isometry in A such that ww∗ ≤ w∗w. Then there exists a unique

∗-homomorphism σ : T → A such that σ(v) = w.

Hint: Set p := w∗w and consider pAp.

Keep the notation preceeding the above exercise.

Theorem 16.2 We have Ki(σ1) = Ki(σ2). Therefore, the map Ki(q) : Ki(T )→ Ki(C)

is an isomorphism.

Proof. By Coburn’s theorem, there exists a ∗-homomorphism ε : T → T ⊗ T such that

ε(v) = v(1− p)⊗ 1. Note that

σ := (σ1, σ2) : T → T ⊗ T D K ⊗ T

and

ε̃ := (ε, ε) : T → T ⊗ T D K ⊗ T

are quasi-homomorphisms. Moreover σ ⊥ ε̃. By the properties of quasi-homomorphisms

discussed in the previous section, it follows that Ki(σ + ε̃) = Ki(σ) + Ki(ε̃) = Ki(σ1)−
Ki(σ2). We will be done if we show that Ki(σ + ε̃) = 0.

Let

vt : = cos(
π

2
t)(p⊗ 1) + sin(

π

2
t)(vp⊗ 1) + v(1− p)⊗ 1

wt : = cos(
π

2
t)(p⊗ v) + sin(

π

2
t)(vp⊗ 1) + v(1− p)⊗ 1

Note that vt and wt are isometries in T ⊗ T . For every t ∈ [0, 1], by Coburn’s theorem,

there exists ∗-homomorphisms σ
(t)
+ : T → T ⊗ T and σ

(t)
− : T → T ⊗ T such that

σ
(t)
+ (v) = vt

σ
(t)
− (v) = wt.

Clearly σ(t) := (σ
(t)
+ , σ

(t)
− ) : T → T ⊗ T D K ⊗ T is a homotopy of quasi-homorphisms.

Note that σ(0) := σ + ε̃. By the homotopy invariance, we have

Ki(σ + ε̃) = Ki(σ
(1)
+ , σ

(1)
− ).

But σ
(1)
+ = σ

(1)
− . Hence Ki(σ + ε̃) = 0. Consequently, we have Ki(σ1) = Ki(σ2). This

completes the proof. 2.
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Corollary 16.3 Let T0 := Ker(q). Then Ki(T0) = 0.

Proof. Note that the short exact exact sequence

0 −→ T0 −→ T
q−→ C −→ 0

is split exact with the splitting given by j. Since Ki(q) is an isomorphism, the conclusion

follows. 2

The next step in the proof of Bott periodicity is to establish that Ki(T0 ⊗ B) = 0

for every C∗-algebra B. Actually, we do not have to do anything. If we go through the

proofs once again, we realise that all we need to know about the functor Ki is that it

is stable, homotopy invariant and sends split exact sequences to split exact sequences.

The proof is applicable for any functor from the category of (nuclear) C∗-algebras to the

category of abelian groups which is split exact, homotopy invariant and is stable.

Fix a C∗-algebra B. Let F be the functor from the category of nuclear C∗-algebras

to the category of abelian groups defined by F (A) = Ki(A⊗B). Then F is split exact,

stable and homotopy invariant. Therefore F (T0) = 0, i.e. Ki(T0 ⊗ B) = 0. With this in

hand, we can complete the proof of Bott periodicity.

Theorem 16.4 (Bott periodicity) For any C∗-algebra B, we have

K0(B) ∼= K1(SB) = K1(C0(R)⊗B).

Proof. Let σ : T → C(T) be the map that sends v to z. Denote by ev1, the evaluation

map from C(T)→ C at 1. Note that q = ev1 ◦ σ. We can identify C0(R) with Ker(ev1).

Consequently, we have the following short exact sequence

0 −→ K −→ T0 −→ C0(R) −→ 0.

Tensor the above short exact sequence to obtain the following.

0 −→ K⊗B −→ T0 ⊗B −→ C0(R)⊗B −→ 0.

Since K0(T0 ⊗B) = K1(T0 ⊗B) = 0, it follows that the index map

∂ : K1(C0(R)⊗B)→ K0(K ⊗B) ∼= K0(B)

is an isomorphism. This completes the proof. 2
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Remark 16.5 In fact, the statement of Bott periodicity is a bit more. Bott periodicity

gives an explicit map from K0(B) → K1(SB). We explain this for unital C∗-algebras.

Let B be a unital C∗-algebra. Then

Mn((SB)+) := {f : T→Mn(B) : f(1)ij ∈ C1B}.

For a projection p ∈Mn(B), let fp : T→Mn(B) be defined by

fp(z) = zp+ 1n − p.

Then fp is a unitary in Mn((SB)+).

Bott periodicity asserts that there exists a unique map β : K0(B) → K1(SB), called

the Bott map, which is an isomorphism such that

β([p]) = [fp].

If we carefully work through the proofs and unwrap all the identifications, we can prove

that the Bott map is indeed an isomorphism. The reader should carry out this verification.

Remark 16.6 Much of the material on K-theory is based on the lectures given by Cuntz

during a conference held at Oberwolfach in 2014.
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