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PREFACE

These are the lecture notes prepared for a course on C*-algebras given by the author
at IMSC, Chennai during Sept 2019-March 2020. The targeted audience were graduate
students interested in working in the area of operator algebras. The aim of this course
was to make the audience familiar with few basic notions in the theory of C*-algebras
and make them familiar with the language required to read the current literature on
the subject. The topics discussed in this notes (we merely scratch the surface as the
motivation is to make the reader converse in the language as opposed to giving a complete
treatment) are universal C*-algebras, group C*-algebras, crossed products, Hilbert C*-
modules, Morita equivalence, and K-theory.

The prospective reader of these notes is assumed to have acquaintance with the

following topics in C*-algebras.
(1) Gelfand-Naimark theorem for commutative C*-algebras,
(2) continuous functional calculus,
(3) the notion of positivity, states and the GNS construction,
(4) the quotient construction in C*-algebras, and
(5) the existence of approximate identities in C*-algebras.

Arveson’s “Invitation to C*-algebras” is an ideal and a highly recommended book to
learn the above mentioned topics. The organisation of this notes is as follows.

In the first few sections, we discuss a few examples of C*-algebras. The first example
we discuss is the algebra of compact operators and realise them as a universal C*-

algebra given in terms of generators and relations. This serves as a model for the notion



of universal C*-algebras. The universal C*-algebras allows us to quickly define group
C*-algebras and crossed products, two classes of examples extensively studied in the
literature. Several important C*-algebras studied in the literature has this universal
prescription so it is appropriate to give a rigorous treatment. A little glimpse to the
world of semigroup C*-algebras is provided with a treatment of the Toeplitz algebra.
After quickly reviewing the measure theoretic preliminaries in Section 4, we discuss in
Section 5 group C*-algebras associated to a locally compact second countable Hausdorff
group.

In Section 6, we take up crossed products of C*-algebras. After defining the full
and reduced crossed product, we introduce Hilbert C*-modules in Section 7 as a tool to
prove that the reduced C*-norm is independent of the choice of the representation that
one chooses. The author believes that it is an appropriate point to introduce the notion
of Hilbert C*-modules to the reader. As an application of the machinery of crossed
products, Stone-von Neumann theorem regarding the uniqueness of irreducible Weyl
representations is proved in Section 8. After a short discussion on the non-commutative
torus, we discuss Rieffel’s proof of Mackey’s imprimitivity theorem in Section 10. The
notion of Morita equivalence is introduced and a proof is provided in the discrete setting.

Sections 11-16 in itself constitute a short course on K-theory. After deriving the basic
properties of Ky and K7, the chapter culminates with the proof of Bott periodicity due to
Cuntz. The treatment on K-theory, and also on universal C*-algebras is based on three
lectures given by Cuntz during the Oberwolfach conference on semigroup C*-algebras
held in Oct 2014. It also borrows material from the Master’s thesis of Prakash Kumar
Singh, a former student of CMI, Chennai , done under the author’s supervision.

There are several excellent resources to read about the material covered in this notes.
The bibliography contains a sample list. It is certainly not exhaustive and I apologise
sincerely for any omission. The author claims no originality for the material presented
nor for the way it is presented.

I would to like end this short introduction by thanking a few people who have helped
me immensely so far. First, I would like to thank V. S. Sunder and my advisor Partha
Sarathi Chakraborty for teaching me several aspects of mathematics which has enriched
my understanding of the subject. I thank Arup, Bipul and Prakash for several discus-
sions on K-theory. I thank Anbu and Murugan for discussions regarding the uniqueness
of Weyl relations. Last but not least, I thank the participants of this course Sruthy,
Piyasa and Jayakumar for attending all the lectures and their enthusiasm shown which

kept me going for the entire length.
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1 The (C*-algebra of compact operators

The first C*-algebra of interest is the algebra of compact operators on a separable Hilbert
space. We assume throughout that all the Hilbert spaces that we consider are separable.
Our convention is that the inner product is linear in the first variable and antilinear in
the second variable. Let us recall the following facts usually learnt in a first course on

functional analysis. Let H be a separable Hilbert space.

(1) A bounded linear operator 7" : H — H is said to be compact if the following
condition is satisfied. Suppose (z,,) is a bounded sequence in ‘H. Then (T'z,) has

a convergent subsequence in H.

(2) Denote the set of compact operators on H by K(#H). Then K(H) is a norm closed
two sided ideal in B(H). Moreover K(#H) is closed under taking adjoints.

(3) An operator 7' : H — H is said to be finite rank if Ran(T) is finite dimensional.
Denote the set of finite rank operators on H by F(H). Then F(H) is dense in
K(H).

For £, € H, let b, € B(H) be defined by ¢, (v) = {(v|n). Clearly, ¢, is of rank

one and hence compact. Note the following relations.

Ocn = One
Oc1m Ocome = (S2|11) 061 o
T = Ore
Oc T = O ey

for £,m,&1,&,m1,m0 € H and T' € B(H). The above relations imply that the linear span
of {0¢,, : &,m € H} is a *-closed subalgebra of K(H).

Exercise 1.1 Prove that the linear span of {6, : £,n € H} is F(H).

Observe that the map H X H 3 (§,1) — 0, € K(H) is linear in the first variable and
antilinear in the second variable. Note that for £, € H, [|0¢,|| = ||¢]||In]]. These two
facts and the fact that F(#) is dense in KC(H) together imply that if D is a countable
dense subset of H, then {f¢, : {,n € D} is total in K(#H). Thus K(#H) is a separable
C*-subalgebra of B(H).

The two most important results regarding the C*-algebra of compacts is that K(#H) is
simple, i.e. it has no nontrivial two sided ideals and that K(H) has only one irreducible

representation up to unitary equivalence.



Theorem 1.1 Let H be a separable Hilbert space. Then KC(H) is simple.

First we prove the result assuming # is finite dimensional. Suppose dim(#) = n. Then

every linear operator on #H is compact and consequently KC(?) is isomorphic to M, (C).
Lemma 1.2 Forn > 1, M,(C) is simple.

Proof. Let n > 1 be given. For i,j € {1,2,---,n}, let e;; be the matrix with 1 at
the (4, j)"-entry and zero everywhere. Then {e;;};; forms a basis for M,(C). Note the

following relations.

€ijCrl = 5jk€il

*

for i,j,k,1 € {1,2,--- ,n}. Let I be a non-zero two sided ideal in M, (C). Pick a non-
zero element X € I. Write X = ZZ] x;;€i;. There exists k, [ such that zj; # 0. Note
that ep Xey = xrer. Hence ey € I as I is a two sided ideal. Let 4,5 € {1,2,--- ,n} be
given. Note that e;; = e;jzepe;;. Hence e;; € I for every ¢, 5. But {e;;};; is a basis for
M, (C). As a consequence, it follows that I = M, (C). This completes the proof. 0

Lemma 1.3 Let A be a C*-algebra. The following are equivalent.
(1) For every non-zero representation w, ||w(a)|| = ||all|.
(2) The C*-algebra A is simple.

Proof. Suppose (1) holds. Let I be a non-zero ideal in A. Let 7 : A/I — B(H,) be a
faithful representation of A/I. Denote the quotient map A — A/I by q. Then for every
a € A, ||rog(a)|| = ||al|. In other words, ||a|| = ||a+I|| for every a € A. Pick a non-zero
element x € I. Then the previous equality implies that ||x|| = ||z + I|| = 0 which is a
contradiction. This proves (1) = (2).

Suppose (2) holds. Let 7 be a non-zero representation of A. Then ker(mw) = {0}.
Hence 7 is injective. But any injective *-homomorphism is isometric. Thus ||7(a)|| = ||a|
for every @ € A. Thus (2) = (1) is proved. Hence the proof. O

Fix an orthonormal basis {&;,&,---} for H. For i,j, let By = 0 ¢,. Observe the

following.

EijEw = 0By (1.1)
B = By (1.2)



for i,j,k,1 € N. Let A, be the linear span of {E;; : i,j € {1,2,--- ,n}}. The above
relations imply that A, is a x-subalgebra of K(#). Since A,, is finite dimensional, it
follows that A, is norm closed. Moreover the map e;; — E;; from M, (C) — A, is an
isometric #-isomorphism (Why?). Thus A4, is simple. Observe that A, C A,.; and
A=, An is norm dense in K(H) (Why?).

Proof_of Theorem [1.1] Let m : K(H) — B(H,) be a non-zero representation. Since
A is dense in KC(H), it follows that there exists ng such that 7 is non-zero on A,,. Since
A, C A, for n > ng, it follows that 7 restricted to 4, is non-zero. But A, is simple.

Consequently 7 is isometric on A,, for n > ngy. Since A = A, it follows that

n>ngo
[|m(a)|| = ||a|| for every a € A. Since A is dense in K(H), it follows that || (a)|| = ||a||
for every a € KK(#H). Hence IC(H) is simple. This completes the proof. O

Next we derive a “universal picture” of K(H). Keep the foregoing notation.

Proposition 1.4 Let A be a C*-algebra. Suppose there exists a system of matrix units
{e;j11,j € N} in A, i.e. the set {e;; : i, € N} satisfies the following relations.

€ij€kl = 0jk€il

* f— ..
€;; = €ji

fori,j,k,l € N. Then there exists a unique x-homomorphim m : K(H) — A such that
fori,j € N, w(E;;) = e;.

Proof. Note that {E;; : 4,5 € {1,2,--- ,n}} is a basis for A,, for every n. Thus there
exists a linear map m, : A, — A such that 7, (E;;) = e;; fori,j € {1,2,--- ,n}. Clearly
T, is a *-homomorphism. Since A, is simple, it follows that 7, is isometric. The maps
(m,)’s are consistent, i.e. 7,114, = m,. Thus there exists a *-homomorphism 7 : A — A
such that 7|4, = m,. Since each 7, is isometric, it follows that 7 is isometric. Thus,
7 extends to a x-homomorphism to the closure of A which is K(#H). We denote the
extension again by m. It is clear that 7 is the required map. Uniqueness of 7 is obvious.
O

Derive the following “coordinate free” description of the universal picture of (H).
Exercise 1.2 Let D be a dense subspace of H and A be a C*-algebra. Suppose that for
§,n € D, there exists e¢,, € A such that

62777 = 6777&
C¢1,mCeame = <§2|771>€§1,772

for &,&1,&,m,m1,m2 € D. Show that there exists a unique x-homomorphism m : K(H) —
A such that (0¢,) = e¢,, for {,n € D.



Next, we study the representation theory of the algebra of compact operators. The

crucial facts regarding the representation theory of compacts are the following:

(1) Any non-degenerate representation of K(#) is a direct sum of irreducible represen-

tations.

(2) The only irreducible representation, up to unitary equivalence, of K(H) is the

identity representation.

This is the content of the next theorem.

Exercise 1.3 Keep the foregoing notation. Let E, = > | E;. Note that E, is the
projection onto the subspace spanned by {&1,&s,- -+ ,&,}. Hence E, < E,1 forn > 1.
Show the following.

(1) The sequence (E,) — 1 strongly, i.e. E,& — & for every £ € H.
(2) For every finite rank operator T on H, TE,, — T and E, /T — T in norm.

(3) For every compact operator T on H, TE, — T and E, T — T in norm. In other
words, (E,) is an approzimate identity of K(H).

Lemma 1.5 The identity representation of K(H) on H is irreducible.

Proof. Let W be a non-zero closed subspace of H which is invariant under K(#). Pick
a unit vector n € W. Note that 0, (n) = . Thus £ € W for every £ € H. This implies
that W = H. Hence the proof. O

Theorem 1.6 Let 7 : KK(H) — B(H) be a non-degenerate representation. Then there

exists a Hilbert space Hy and a unitary U : H ® Ho — B(H) such that
m(A)=UA®1)U*
for Ae K(H).

Proof. Set E, := > | E;. Note that E, is an approximate identity of K(#). Since
7 is non-degenerate, it follows that m(F,) — 1 strongly. Thus there exists ¢ such that
7(E;;) # 0. Choose such an i. We claim that 7(E};) # 0 for every j. Note that m(E;;) is
a partial isometry with initial space m(E;;) and final space 7(E;;) # 0. Hence 7(E};) # 0.

This proves our claim.



Let Ho be the range space of 7(E;). Denote the dimension of Hy by d and let {n;}%,
be an orthonormal basis for Hy. We claim that {7(E;;)n;,}:; is total in H. Denote the
closed linear span of {w(E;1)n;}i; by Hi. It is clear that 7(E,) leaves H; invariant for
every r,s. Since the linear span of {E,s} is norm dense in K(H), it follows that H; is
invariant under 7 and so is H;.

Suppose Hi # {0}. By definition, it follows that Hy C H;. Hence Hi C Hi =
Ker(n(Ey;)). Thus m(Ey;) = 0 on Hi. But n(E;;) is a partial isometry with final space
7(E;;) and initial space 7(Ey1) = 0 on Hi. Consequently, m(E;) = 0 on Hi for every i
which contradicts the fact that w(£,) — 1 strongly. This proves our claim.

Let r,s € Nand j,k € {1,2,--- ,d} be given. Calculate as follows to observe that

(m(Er)nj|m(Esi)me) = (m(Evs)m(Er)njlne)
= Ops (T (Er1)n;1mk)
= 0rs (N |1
= Ors0jk.

The above calculation together with the fact that {m(E;)n;}; is total in H ensures
that there exists a unitary U : H ® Hy — H such that U(& ® n;) = m(Ei1)n;. A direct
calculation reveals that U(FE,;®1)U* = 7(FE,s). The proof is now completed by appealing
to the fact that linear span of {£;; : 4, j} is dense in K(H). O

Exercise 1.4 Let 7w : K(H) — B(H) be a non-degenerate representation. Suppose there
exists a Hilbert space Hy and a unitary U : H @ Hy — H such that

7(A) = U(A® 1)U

for A € K(H). Show that dim(Hy) is the dimension of the range space of m(p) where p
1s any rank one projection. The dimension of Ho is called the the multiplicity of the

identity representation in 7.

We usually identify all infinite dimensional separable Hilbert space and reserve the
letter K to indicate the C*-algebra of compact operators on a separable infinite dimen-

sional Hilbert space.



2 Universal C*-algebras

Often, a C*-algebra is prescribed in terms of generators and relations. We have already
seen one example of this phenomenon. The C*-algebra K is the universal C*-algebra
generated by a system of “matrix units” {e;; : i, j € N}. We make this idea precise here.
This is based on the lectures given by Cuntz in 2014 at Oberwolfach.

Let A be a *-algebra. Let p : A — [0, 00) be a map. We say that p is a C*-seminorm
if

(1) p is seminorm on A,
(2) for z € A, p(z*z) = p(z)?, and
(3) for .y € A, p(ey) < p(x)p(y)-

For x € A, define ||z|| := sup{p(x) : pis a C*-seminorm on A}. It is quite possible that

||z|| is infinite for some = € A. Suppose assume that ||z|| < oo for every x € A. Let
I'={zeA:|lz|| =0}

Condition (3) implies that I is an ideal in A. Consider the quotient A/I. The semi-norm
|| || descends to a C*-norm on A/I. The completion of A/I with respect to this C*-norm
is called the universal C*-algebra of A or the enveloping C*-algebra of A usually denoted
C*(A).

Exercise 2.1 Keep the foregoing notation. Show that for every x € A,
||z|| = sup{||7(z)|| : 7 is a x-homomorphism from A to a C*-algebra}.

l|z|| = sup{||7(x)|| : 7 is a non-degenerate representation of A}.

(Recall that a representation m : A — B(H) is said to be non-degenerate if m(A)H is
dense in ‘H. If A is unital, non-degenerate representations are precisely unital represen-

tations).
Remark 2.1 Note that C*(A) ezists if and only if ||z|| < oo for every x € A.

Consider the natural map A — C*(A). We abuse notation and write the image of an
element = € A under this map by z itself. The C*-algebra C*(.A) is called the “universal
C*-algebra of A” because it satisfies the following universal property. Keep the foregoing

notation.
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Proposition 2.2 Suppose B is a C*-algebra and let 7 : A — B be a *x-homomorphism.
Then there exists a unique x-homomorphism 7 : C*(A) — B such that 7(x) = 7(x) for
every r € A.

Proof. Uniqueness is obvious. For existence, let p : A — [0,00) be defined by p(z) =
[|m(z)|]. Note that p is a C*-seminorm on A. Thus || (z)|| < ||z|| for every x € A. This
implies that 7 descends to a *-homomorphim say 7 : A/I — B. It is clear that 7 is
bounded. Denote the extension to C*(.A) again by 7. Then 7 is the required map. This
completes the proof. O

Often, the algebra A itself is given by generators and relations. For example, consider

the following statements

(1) Let A be the universal unital x-algebra generated by a single element u such that

w'u =1 and uu* = 1.
(2) Let A be the universal unital x-algebra generated by v such that v*v = 1.
(3) Let A be the universal unital x-algebra generated by P, @ such that PQ —QP = 1.

(4) Let A be the universal x-algebra generated by {p;}"; such that p? = p; = p} and
pip; = 0i5Di-

What do we mean in each statement ? For example in (1), we mean that there exists a
x-algebra A, unique up to unique isomorphism, which is generated by a single element u
and has the following universal property : Suppose B is a unital x-algebra and w € B be
such that w*w = ww* = 1. Then there exists a unique x-homomorphism 7 : A — B such
that m(u) = w. We do the same for (2), (3) and (4). The justification of the existence of
such an A is always by abstract nonsense.

Consider now the following statement. Let 7 be the universal unital C*-algebra
generated by a single element v such that v*v = 1. What do we mean by this ? First,
we take the universal unital x-algebra generated by v such that v*v = 1. Denote it by
A. Then T = C*(A). The C*-algebra T is called the Toeplitz algebra in the literature.
But, does T exist 7 Yes, it exists. For suppose p is a C*-seminorm on A. Define
I, .= {a € A: p(a) = 0}. Then p descends to a C*-norm on A/I,. Let A, be the
completion of A/I,. Since v + I, is an isometry in A, and consequently |[v + L,|| < 1.
Thus any word in v and v* has p-norm at most 1. Now let x be an element in A. Write
T =) W, where w, is a word in v and v*. Then p(x) < ) |74| and the latter bound

is independent of p. Consequently ||z|| < oo for every x.

11



Remark 2.3 The argument outlined above works in the following situtation. Suppose A

is a x-algebra generated by {x;} and each x; has p-norm atmost 1 for every C*-seminorm
p on A. Then C*(A) ezists. However C*(A) might be zero.

The Toeplitz algebra has the following “universal property”

Exercise 2.2 Suppose B is a unital C*-algebra and w € B is such that w*w = 1. Then

there exists a unique *-homomorphims 7 : T — B such that 7(v) = w.

Let us now show that the Toeplitz algebra is non-zero. We show this by producing
a non-zero representation of 7. Consider the Hilbert space ¢*(N). Let {0,},>1 be the
standard orthonormal basis for ¢*(N). Let S : (*(N) — ¢*(N) be the unique operator
such that S(4,) = d,41. Then S is an isometry, i.e. S*S = 1. The universal property
of T guarantees that there exists a unique x-homomorphism 7 : 7 — C*(S) such that
m(v) = S. Later, we will show that 7 is an isomorphism.

To summarise, we usually, but not always, apply Remark to justify the existence
of the universal C*-algebra. To show, it is non-zero, we need to find a non-zero rep-
resentation of the universal *-algebra A on a Hilbert space or equivalently a non-zero

x-homomorphism from A to a C*-algebra. Use this to do the following exercises.

Exercise 2.3 Show that the universal unital C*-algebra generated by u such that u*u =
uu* =1 emists.

Exercise 2.4 Show that the universal unital C*-algebra generated by {p;}i—, satisfying
the relations p? = p; = pi and pip; = 0;;p; exists.

Let us identify the universal C'*-algebras considered in the above two exercises concretely.

Proposition 2.4 The algebra of continuous functions on the circle T denoted C(T) is

the universal C*-algebra generated by u such that uw*u = uu* = 1.

Proof. We denote the function T > 2z — 2z € C by z itself. Let A be the universal
C*-algebra generated by u such that u*u = uu* = 1. Note that u is a unitary in A. The
continuous functional calculus gives a *-homomorphism C(T) — A which maps z — u.
Call it p. The universal property of A gives a map 7 : A — C(T) such that 7(u) = z.
It is clear that o p(z) = w and p o m(u) = z. Since u and z generates A and C(T)
respectively, it follows that m and p are inverses of each other. This completes the proof.
(I

12



Proposition 2.5 Let A be the universal C*-algebra generated by {p; : i € N} such that
p? =p; =p; and pip; = 6i;p;i. Then A ~ Cy(N).

Proof. We leave the proof that A exists to the reader. Let e¢; € Cy(N) be such that
the ith coordinate of e; is 1 and the rest of the coordinates are zero. It is clear that
e? = e; = ef and e;e; = d;;¢;. By the universal property, there exists a *-homomorphism
7 A — Cy(N) such that 7(p;) = e;.

Claim: Let B be a C*-algebra and ¢y, qs,--- ,q, be a finite sequence of orthogonal
projections. Then for every A\, Ao, --- , A\, € C,

)\ii § su )\z
13 vl < s A

By representing B faithfully on a Hilbert space say H, we can assume that ¢, qa, - , qx

are operators on H. Then for a unit vector £ € H, we have

||ZAzqzs||2 Zm (@:€1€)

(sup |Ni])*( Zqzas

1<i<n

< (sup |\|)? ( since qu- is a projection).

1<i<n i1

Henc n
)\iqi < sup /\z 2.3
||i§1 ||_1<2’<n| | ( )

Consider the dense x-subalgebra C.(N) of Cy(N). Note that {e; : i € N} is a basis
for C.(N). Let p : C.(N) — A be the linear map such that p(e;) = p;. Clearly p is a
x-homomorphism. The estimate implies that p is bounded. Denote the extension
of p to Cy(N) by p itself. Then p o 7 agrees with the identity map on the generators.
Consequently p o 7 is identity. Similarly 7 o p is identity. This shows that p and 7 are
inverses of each other. Hence 7 is an isomorphism. This completes the proof. O

Let us give a non-example. The universal C*-algebra generated by two elements P, ()
such that PQ) — QP =1 is zero. It suffices to show the following.

Proposition 2.6 Let H be a non-zero Hilbert space. Then there does not exist bounded
operators P and () on H such that PQQ — QP = 1.

13



Proof. Suppose, on the contrary, assume that there exist P, € B(H) such that the
commutator [P, Q] = PQ—QP = 1. For a bounded operator T, let ¢(T) be the spectrum
of T'. Recall that for bounded operators T, S, o(T'S) U {0} = o(ST) U {0}.

Choose A € o(QP). Note that A +1 € o(QP + 1) = 0(PQ) C o(PQ) U {0} C
o(QP)U{0}. Suppose A\ € {—1,—-2,-3,---}. Then A+ k € o(QP) U {0} for every
positive integer k. The compactness of o(QP) implies that there exists a positive integer
k such that A = —k. The fact that A € 0(QP) = A+ 1 € o(QP) U {0} implies that
—1€o(QP).

Then —1 € o(PQ). The relation PQ — QP = 1 implies that —2 € ¢(QP) which
in turn implies —2 € o(PQ). By induction, we obtain —k € o(PQ) for every positive
integer k& which contradicts the fact that o(PQ) is bounded. This completes the proof.
O

When one talks of the universal C*-algebra given in terms of generators and relations,
one should be cautious and decide first whether it exists or not and whether it is zero or is
non-zero. The notion of universal C*-algebra is very handy and allows us to quickly define
group C*-algebras and crossed products of discrete groups which provide important
examples of C*-algebras.

Group C*-algebras: Let GG be a discrete groupﬂ Then C*(G), called the full group
C*-algebra of G, is defined to be the universal C*-algebra generated by {us : s € G}

which satisfy the following relations:

for s,t € G. Note that the above relations imply that u. is a multiplicative identity
of C*(G) where e is the identity element of G. Moreover {us : s € G} is a family of
“unitaries” and consequently ||us|| <1 for every g € G. Thus, by Remark [2.3] it follows
that C*(@G) exists. The next thing to show is that C*(G) is non-zero.

Consider the Hilbert space ¢*(G) and let {¢; : h € G} be an orthonormal basis for
(*(@). For s € G, let \; be the unitary operator on ¢*(G) such that

)\s(et) = €st

for t € G. The map G 2 s — A\, € B({*(G)) is called the left reqular representation
of G. Then clearly \;\; = Ay and A} = A;-1. Thus there exists a unique unital *-

'We always assume some sort of separability hypothesis. For instance, we mostly assume topological
spaces are second countable, discrete groups are second countable, Hilbert spaces are separable etc...

We do things as if this hypothesis is always there and make no explicit mention of this.
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homomorphism A : C*(G) — B(f2(G)) such that A(us) = A,. This shows that C*(G)
is non-zero. The image of 7 is a C*-subalgebra of B(¢*(G)) and is called the reduced
C*-algebra of G and is denoted C},,(G). Note that C ,(G) is the C*-algebra generated
by {\s : s € G}. Sometimes, we abuse notation and write h\ simply by A. It is natural
to ask whether \ is an isomorphism. It turns out that \is an isomorphism if and only if
the group G is amenable. Abelian groups are amenable. An example of a non-amenable
group is the free group on 2 generators Fs.

Let us take a closer look at C*(G). Let A be the universal x-algebra generated by
{us}seq such that usuy = ug and ul = u,-1. We first obtain a concrete description of A.
Let C.(G) denote the space of finitely supported complex valued functions on G. Define
a *-algebraic structure on C.(G) as follows. For f,g € C.(G), let fxg: G — C be
defined by

Frgls) = Flstglt™).

teG
Note that fxg is well defined. For f and g are finitely supported. Also fxg € C.(G). The

multiplication operation defined above is called the convolution. Define a x-operation on

Ce(G) by f*(s) = f(s71).

Exercise 2.5 Show that C.(G) with the convolution and the x-operation defined above

1S a *-algebra.

The algebra C.(G) is usually called the group algebra of G and the usual notation is
C[G]. For s € G, let 05 € C.(G) be given by

1 ift=seX,
0s(t) == (2.4)
0 ift#£0.
Observe that d; * 0; = 0y and 07 = ds-1. Note that J. is the multiplicative identity of

C.(G). Thus, there exists a x-homomorphism 7 : A — C.(G) such that 7(us) = d, for
seq.

Lemma 2.7 The map 7 is an isomorphism.

Proof. We define the inverse map directly by setting p(ds) = us. This is possible provided
we can show that {Js : s € G} is a basis for C.(G). We claim that {Js : s € G} is a basis
for C.(G). Let f € Cc(G) be given then f = )" . f(s)d,. Moreover if f =" _.as,
then applying the equality at an arbitrary point ¢, we get f(¢) = a;. This proves our
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claim. Let p : C.(G) — A be the linear map such that p(ds) = us. Then clearly po
and 7 o p agrees with identity maps on the generators and hence agrees with the identity
maps everywhere. This shows that p and 7 are inverses of each other. Hence the proof.
O

Thus C*(G) is the completion of C.(G) where the norm on C.(G) is given by
|| f|| :== sup{m(f) : 7 is a unital representation of C.(G) on a Hilbert space}.

How does representations of C.(G) arise 7 Let H be a Hilbert space and U : G —
B(#H) be a map. We say that U is a unitary representation if

(1) for s,t € G, UU; = Ug, and
(2) for s € G, Us is a unitary.

The set of unitaries U(H) is a group and a unitary representation of G on H is simply a
group homomorphism from G to U(H). Let U : G — U(H) be a unitary representation.
Then U; = Us-1 for s € G. Thus there exists a unique unital *-homomorphism, denoted
7y Co(G) — B(H) such that

Ty (0s) = Us

for s € G. Conversely, suppose 7 is a unital representation of C,(G) on a Hilbert space
H. Set Ug = m(ds). Then {Us}seq is a unitary representation of G. Clearly my and 7
agrees on {J; : s € G}. Since {d; : s € G} is a basis for C.(G), it follows that 7 = 7.
Thus, representations of C.(G) are the “same” as the unitary representations of the
group G. Thus for f € C.(G),

[1£]

o+ = sup{my(f) : U is a unitary representation of G'}.

Representations of C*(G) are in one-one correspondence with representations of
C.(G). To summarise, C*(G) is the C*-algebra that captures the representation the-
ory of the group G.

Remark 2.8 The map U — my respects unitary equivalence, irreducibility, direct sum,
ete..... Thus, the study of the representation theory of groups is equivalent to the study
of the representation theory of the associated full group C*-algebra. This has advantages,
for then we can use (operator) algebraic techniques. My favourite application of this
philosophy is the proof of the fact that a finite group admits only finitely many irreducible

representations, up to unitary equivalence.
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This is because if G is a finite group then C*(G) is a finite dimensional C*-algebra.
Consequently, C*(G) is a direct sum of “matriz algebras”. But, for every n, M, (C) has

only one irreducible representation up to equivalence.

Let us identify the full C*-algebra of a discrete abelian group. Let G be a discrete
abelian group. Denote the set of homomorphisms from G to the multiplicative group
T by G. The set G has a group structure where the group multiplication is pointwise
multiplication. The map G > s — 1 € T is the identity element of G. For x € @,
the inverse of x is Y. We endow G with the topology of pointwise convergence, i.e. the
product topology. The convergence of nets is as follows. Suppose (xo) is a net in G
and y € G. Then v, — ¥ if and only if Xa($) — x(s) for every s € G. By Tychonoff

theorem, it follows that G is compact. It is routine to check that Gis a topological

group.
Proposition 2.9 Let G be a discrete abelian group. Then C*(G) is isomorphic to C(G).

Proof. Since the group G is abelian, it follows that A := C*(G) is commutative. Moreover
A is unital. It suffices to show that A is homeomorphic to G. Let X € G be given.
Then, by the universal property, there exists a homomorphism Y : A — C such that
X(us) = x(s). Since {us : s € G} generates C*(G), the map

@9X—>yeﬁ

is 1-1. Let w: A — C be a character. Since {u; : s € G} is a set of unitaries, it follows
that for every s € G, w(us) € T. Set x : G — T by x(s) = w(us,). It is clear that y is a
character of G and w =¥. This proves that the map G > X—XE A is onto.

Let (xo) be a net in G such that (xa) — x € G. Note that {X5} is uniformly
bounded. Thus to show X, — X, it suffices to check Y5 (z) — X(z) for x in a total set
F of A. Set F :={us: s € G} and observe that F'is total in A. Clearly Xq(x) — X(z)
for every x € F. Hence the map G > X —XE A is continuous. Since G and A are both
compact Hausdorff, it follows that the map xy — \ is a homeomorphism. This completes
the proof. O

Crossed products: Let G be a discrete group and let A be a C*-algebra. By an
action of G on A, we mean a family « := {a;}see of automorphisms of A such that
a5 00y = ag for s,t € G. Such a triple (A, G, «) is called a C*-dynamical system. Here

is an example of a dynamical system.
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Example 2.10 Let X be a locally compact Hausdorff space and G be a discrete group
which acts on X wvia homeomorphisms on the left. For s € G and f € Co(X), define

as(f)(z) = f(s™'x).

Then o := {as}tsec is an action of G on Cy(X). Note that G leaves C.(X) invariant
where C.(X) denotes the dense subalgebra of compactly supported continuous functions
on X.

Let G be a discrete group and let A be a unital C*-algebra. Suppose G acts on A and let
« be the action. The full crossed product, denoted A X, GG, is defined to be the universal
unital C*-algebra generated by a copy of A and unitaries {us}seq such that ugu; = ug
and usau’ = as(a) for s € G and a € A. Note that if A = C and « is the trivial action
then A x, G ~ C*(G).

Let us take a closer look at the C*-algebra A x, GG. First, let B be the universal
x-algebra generated by a copy of A and unitaries {us}seg. The relations imply that
the linear span of {asus : as € A,s € G} is B. Our experience with group C*-algebras
suggest that we should treat B as the algebra of functions defined on G but now taking
values in A. Thus consider C.(G, A), i.e. the set of functions f : G — A such that f is
finitely supported.

We make C.(G, A) into a x-algebra by defining the multiplication and the x-operation
as follows: for f,g € C.(G, A),

Frgls)=> fHau(glt™"s))

teG

fr(s) = as(f(s7))

for f,g € C.(G, A). It is a tedious but a routine exercise to verify that the multiplication
and the %-operation defined above makes C.(G, A) into a x-algebra. Note that for f,g €
G, fxg(s) = > eq f(st T ag-1(g(t)). For a € A and s € G, denote the element of
C.(G, A) which vanishes at points other than s and whose value at s is a by a ® J;. Note
that for f € C.(G, A), f =2 .cq [(5) ®6s.

Exercise 2.6 Keep the foregoing notation. Prove that for a,b € A and s,t € G,

(a® ds) * (b® ;) = ans(b) ® 0
(a®05)" = ag-1(a”) @ dg-1
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The above relations and the universal property of B together imply that there exists a
s-homomorphism A : B — C.(G, A) such that A(a) = a ® 0, and A(us) = 1 ® ds. Let
2 Ce(G, A) — Bbe defined by u(f) = > . f(s)us. Note that y is a x-homomorphism.
(The multiplication and the x-operation are defined in such a way on C.(G, A) precisely
to make this map a homomorphism). Clearly Aoy = Id. Note that po X agrees with the
identity map on A and {u, : s € G} which generates B as an algebra. Thus po A = Id.
Hence A and p are inverses of each other.

Then A x G is the enveloping C*-algebra of C.(G,A). Note that the x-algebra

C.(G, A) makes sense even if A is not unital.

Definition 2.11 Suppose G is a discrete group, A is a C*-algebra and « := {as}seq
is an action of G on A. The full crossed product, denoted A %, G, is defined as the
enveloping C*-algebra of C.(G, A).

We need to show that A x,G exists and is non-zero. This requires us to prove that the
universal norm is finite and we are forced to understand non-degenerate representations
of C.(G, A) in more concrete terms. We will make use of the following remark in the

sequel.

Remark 2.12 We will repeatedly make use of the following. Suppose Hi and Ho are
Hilbert spaces and Sy and Sy are total subsets of Hy and Ho respectively. Let ¢ : Sy — So
be a map such that (p(x)|o(y)) = (x|y) for x,y € Si. Then there exists a unique isometry
V . Hi1 — Ho which extends ¢. Moreover if ¢ is a bijection, the isometry V' is a unitary.

Let A : C.(G,A) — B(H) be a non-degenerate representation. Since {a ® ds : a €
A, s € G} spans C.(G, A), it follows that {A(a ® 05)¢ 1 a € A,s € G,& € H} is total in
H. Fixr € G. For a,b € A, s,t € G and &, n € H, calculate as follows to observe that

(Man(a) © 0,5)E | A (e (D) @ Gre))
(€lM(ar(a) @ brs)" A (b) © b,4)m)

= (€M (as1p-1(an(a”) @ Gg-1p-1) * (0 (b) @ 0rt)))

= ({[Mas-1(a"b) © 0o-1)n)
EAe®
(

Il
Mmoo
> > >

= (§|A(a @ 05)"A(b ® 6;)n)
= (Aa ® d5)§IA(b @ 0¢)m).

Appealing to Remark we conclude that there exists a unique unitary, denoted U,,
such that U,(A(a ® 0,)€) = AMa-(a) ® 0,5)¢ for a € A, s € G and £ € H. By evaluating
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on the total set {Aa ® 65) : a € A, s € G, € H}, we conclude that U, Uy = U, for
every r,s € G. Thus U := {U, }scq is a unitary representation of G on H.
Define for a € A, m(a) = AM(a ® ). Then 7 is a *-representation of A on H.

Exercise 2.7 Prove by evaluating on the total set {\(a ® 65) :a € A,s € G,€ € H}
that

(1) the representation m is a x-representation,

(2) the family U := {Us}seq is a unitary representation of G,

(3) fora € A and s € G, Usm(a)UF = m(as(a)) or equivalently Ust(a) = m(as(a))Us.
Such a pair (m,U) is called a covariant representation of the dynamical system.

Keep the foregoing notation. The representation A can be recovered from the pair (7, U).
Note, again by evaluating on the total set, that A(a ® d5) = w(a)Us. Since the set
{Ma®d,)€ a € Ajs € G, & € H} is total, it follows that {m(a)Us :a € A, s € G, £ € H}
is total in H. This implies that the representation 7 is non-degenerate.

We can reverse the above process. First a definition.

Definition 2.13 Consider a C*-dynamical system (A,G,«a). Let m : A — B(H) be a
representation and U : G — U(H) be a unitary representation. We say that the pair
(m,U) is a covariant representation of the dynamical system (A,G,«) if for a € A,
seq,

Ust(a)U; = m(as(a)).

We always assume that w is non-degenerate.

Let (m, U) be a covariant representation of the dynamical system (A, G, «). Define a map
A Co(G,A) = B(H) by Mf) = X sea ®(f(5))Us. It is clear that A(f * g) = A(f)A(g)
and A(f)* = A(f*) if f and g are of the form a ® 5. But since {a ® 6,} spans C.(G, A),
it follows that A is a x-homomorphism. Note that A(a ® §.) = 7(a). Hence A is non-
degenerate. We denote this map A by 7 x U.

Exercise 2.8 Let (m,U) be a covariant representation of (A, G,«a). Prove that the co-
variant representation that we obtain if we apply the process described before Definition

2.1 to the non-degenerate representation m x U is (w,U).
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Thus non-degenerate representations of the s-algebra C.(G, A) are in 1-1 correspon-
dence with covariant representations of the dynamical system (A, G, «). Therefore, the

universal norm on C.(G, A) is given by
|| f|| = sup{||(m x U)(f) : (x,U) is a covariant representation of (A, G, «)}.

For f € C.(G, A), let || f]]1 := > e [If(5)]|. Let (m,U) be a covariant representation of
(A, G, a). Note that for f € C.(G, A),

1w YOI = 11D w(FEU < D ImFENT < D IF1 = lIf 1
s€G s€G s€G

Hence ||f|| < [|f||l1 for every f € C.(G,A). This proves that || || is a genuine C*-
seminorm on C.(G, A). Next we show that || || is indeed a norm on C,(G, A) by exhibiting
a covariant representation.

Let m : A — B(#) be a faithful representation. Consider the Hilbert space H :=
H R (*(G). Let {¢ : t € G} be the standard orthonormal basis for £2(G). For a € A, let
7(a) be the bounded operator on H given by the equation 7 (a)(€ ® ¢,) = m(a; H(a)) @ €.
Let {\, : s € G} be the left regular representation of £2(G). For s € G, set Ay = 1 ® A,.

Exercise 2.9 Verify that (7, \) is a covariant representation of (A, G, a).
Proposition 2.14 The map C,(G,A) 3 f — (7 x \)(f) € B(H) is injective.

Proof. Suppose (7 x A\)(f) = 0. For s € G, set a; = f(s). Then for every &,n € H and
r,t € G, we have ZS€G<%(CLS)X9(£ ® €.)|n ® ) = 0. This implies that for £,n € H and
r,tedq,

Z(W(a;}(as»g ® €sr|n ® €) = 0.

seG

Fix s € G. In the previous expansion, substitute r = s~ and ¢ = e to obtain (7 (a,)¢|n) =
0 for every &,7 € H. But « is faithful. This implies that a; = 0. Hence f = 0. This

completes the proof. O
Keep the foregoing notation. For f € C.(G, A), define ||f||,ea = ||[(T x A)(f)||. By
what we have shown, it follows that || ||,eq is & C*-norm on C.(G, A). By definition,

[|fllrea < ||f|| for f € C.(G, A). Hence the universal norm || || is a C*-norm.

Definition 2.15 The completion of C.(G,A) with respect to the universal norm || || is
called the full crossed product and is denoted A X, G.
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Remark 2.16 It is a remarkable fact that || ||,eqa is independent of the chosen faithful
representation w. We will prove this in the next chapter. The norm || ||ea is called the
reduced norm on C.(G, A). The completion of C.(G, A) with respect to the reduced norm
is called the reduced crossed product and is denoted A %, G.

Clearly there is a natural surjective homomorphism from Ax, G — A X, ,G. Unless
there is some amenability hypothesis, we cannot expect the above map to be an isomor-

phism.

Exercise 2.10 Suppose A is a dense x-algebra of A and assume that as(A) C A for
every s € G. Prove that A x, G := span{a ® 05 : a € A, s € G} is a dense x-subalgebra
of Ax,G.

Let us identity one example of a crossed product explicity. Let G be a discrete group and
let G acts on the topological space G by left translations. Consider the induced action
a of G on Cy(G). For s € G, let x5 be the characteristic function at s. Then x, € C.(G)

and as(Xt) = Xst-
Proposition 2.17 The crossed product Co(G) x4 G is isomorphic to K((*(Q)).
Proof. The algebra K(¢*(@G)) has a universal picture. Thus, it suffices to exhibit appro-
priate matrix units in Co(G) X, G. Let {Es; : s,t € G} be the natural system of matrix
units in K(¢*(G)) which correspond to the standard orthonormal basis {¢; : t € G} of
Q).

For s,t € G, let e5; = xs ® 05-1. For ¢,7,s,t € G, calculate as follows to observe
that

Cqr* st = (Xg @ Ogr—1) * (Xs ® Og-1)
= XgXqr-1s ® Ogp-154—1
= 5q,qr—1sXq ® 5qt‘1
= 5r,sXq ® 5qt*1

= Ors€q.t-
For s,t € GG, observe that
€st = (Xs X 6st*1)* = O‘ts*1<Xs) X ts_l =Xt & 5755*1 = €¢,s-

Thus {es; : s,t € G} forms a system of matrix units. Thus, by the universal property
of K(f*(@)), there exists a *-homomorphism A\ : K(¢*(G)) — Cy(G) %, G such that
A Est) = esy. By Exercise , it follows that A is onto. Since K(*(G)) is simple, it
follows that A is one one. Hence A is an isomorphism. This completes the proof. a
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Exercise 2.11 Consider the Hilbert space (*(G). For f € Co(G), let M(f) be the
bounded operator on (?(G) defined by the equation

M(f)E(s) = f(s)€(s)

for € € (*(G). Show that M : Co(G) — B((*(GQ)) is a non-degenerate *-representation.
Let A := {)\;}seq be the left reqular representation of G on (*(G). Prove that (M, \) is
a covartant pair.

Use the fact that Co(G) X oG is simple to show that M x X implements an isomorphism
between Co(G) x4 G and K(*(G)).

Let us end this section by listing out a few examples of universal C*-algebras which

have played crucial role in the development of the subject.

Cuntz algebra O,, : Let n > 2. The Cuntz algebra O,, is defined to be the universal

unital C*-algebra generated by isometries s1, So,-- - , S, such that

n

Z sis; = 1.

i=1
Note that {s;sf :i=1,2,--- ,n} is a family of projections which add up to 1 which is
again a projection. Thus the projections {s;s}? ; form a family of mutually orthogonal
projections which is equivalent to saying s;s; = 0 if ¢ # j. The Cuntz algebra O, is

simple.

The non-commutative torus Ay : Let § € R. The non-commutative torus Ay is
defined to be the universal C*-algebra generated by two unitaries u,v such that uv =
e?™%yu. Define Ry : T — T by Ry(z) = e #%2. Note that Ry is a homeomorphism of
T. Consequently, this gives rise to an action of the cyclic group Z on C(T). Show that
C(T) x Z is isomorphic to Ay. If 6 is irrational, then Ay is simple.

The computation of K-theoretic invariants for the two C*-algebras listed above were
significant breakthroughs in operator K-theory. The non-commutative torus still re-

mains one of the widely studied example in noncommutative geometry.

The odd dimensional quantum sphere : Let 0 < ¢ < 1 be given and ¢ > 0. The
C*-algebra C'(S2°"!) of the quantum sphere S2°™! is the universal C*-algebra generated

23



by elements 21, 29, . .., zp41 satisfying the following relations:

2iz; = %%, 1<j<i</l+1,
2izp = qzz], 1<i#£j</0+1,
gz =2zt (1=¢)) wz = 0, 1<i<l+1,
k>i
0+1
Zzizf = 1
i=1

Note that for £ = 0, the C*-algebra C'(S2"") is the algebra of continuous functions C(T)
on the torus and for ¢ = 1, it is denoted C(SU,(2)). The C*-algebra C(SU,(2)) is one of

the first examples in Woronowicz theory of compact quantum groups and is one of the

first examples whose representation theory was explicitly worked out.
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3 The Toeplitz algebra and the unilateral shift

In this section, we discuss the C*-algebra generated by the unilateral shift on ¢*(N).
We prove Coburn’s theorem which asserts that it is the universal C*-algebra generated
by a single isometry. Coburn’s theorem is a fundamental theorem and we will see its

importance when we discuss Cuntz’ proof of Bott periodicity in K-theory.

Definition 3.1 Let T be the universal unital C*-algebra generated by v such that v:v =
1. The C*-algebra T s called the Toeplitz algebra.

By Remark 2.3] the C*-algebra T exists. Consider the Hilbert space £2(N). Let {8, : n >
0} be the standard orthonormal basis for £?(N). Let S be the bounded operator on ¢?(N)
such that S(d,) = d,.1. The operator S is called the unilateral shift on (*(N). Clearly
S*S = 1. Thus, by the universal property of T, there exists a unique *-homomorphism
T — C*(S) which maps v — S. Here C*(S) denotes the C*-algebra generated by S.
Coburn’s theorem asserts that this map is indeed an isomorphism which is the main aim
of this section.

Let us take a closer look at the C*-algebra C*(S). For m,n > 0, let E,,,, = 05,, 5,
Set P :=1—S5*. Note that P = Eyy and E,,,, = S™PS*. Since the linear span of
{Ey.., : m,n € N} is dense in K(¢*(N)), it follows that K(¢*(N)) is contained in C*(S).
Hence KC(¢%(N)) is an ideal in C*(S). Note that S, the image of S under the canonical
surjection, in the quotient C*(S)/K is a unitary. Thus the quotient is generated by a

single unitary S
Lemma 3.2 The spectrum of S in C*(S)/K is T.

Proof. For z € T, let U, be the unitary defined by the equation U,(d,) = z"d,. Note that
U, SU; = zS forevery z € T. Fix z € T. The map T" — U,TU; defines an automorphism
of C*(S) which leaves the ideal I invariant. Thus, it descends to an automorphism, let
us denote it by a., on the quotient C*(S)/K. Note that «.(S) = 25.

Denote the spectrum of S by ¢(S). Fix z € T. Since a, is an automorphism, it
follows that o(a.(S)) = (S). But a.(S) = 2z5. Hence o(a.(S)) = z0(S). This implies
that ¢(S) is invariant under multiplication by T. Since S is a unitary, it follows that
o(9) is contained in T. Hence ¢(S) = T. This completes the proof. O

Denote the function T 3 z — 2z € C by z itself. Now continuous functional calculus
and [3.2[ implies that there exists a *-homomorphism C*(S) — C(T) which maps S — z.

Summarising our discussion, we have the following exact sequence

0 — K(*(N)) — C*(S) — C(T) — 0
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where the map C*(S) — C(T) sends S — z and the map K — C*(S) is the natural
inclusion.

The first step towards the proof of Coburn’s theorem is to derive a similar exact
sequence for the Toeplitz algebra 7. We imitate what we did for C*(S). Set p := 1 —vv*.
Then p # 0. For m,n > 0, set e,,,, = v"pv*™. Note that v*p = 0. Hence v*"p = 0 for
every n > 1. Taking adjoints, we get pv™ = 0 if m > 1. Note that v*"v™ = ™" if
m > n and if m < n then v*"0™ = p*=m),

Let mq,nq, mo,no > 0 be given. Suppose n; > my. Then

*N1 .M, N (n1—m2)

€mimi Emams = U pUTIU 2 pr*? = 0™ py* pv*™? = 0.

A similar calculation reveals that if my > n; then e, n,€myn, = 0. Clearly if my = n4,

then €, 1, €mans = €my.n,- Hence

€m17n1 em2:n2 = 5m27n1 emlyn2 :

Clearly € = Cnm for m,n > 0. Thus e,,, is a system of matrix units. Let I be the
closed linear span of {e,,, : m,n > 0}. Note that [ is an ideal in 7. Indeed I is the ideal
generated by p. By the universal property, there exists a homomorphism A : 7 — C(T)
such that A\(v) = z. Since C(T) is the universal C*-algebra generated by a single v such
that v*v =1 and 1 — vv* = 0, it follows that the kernel of A is I.

Thus, we obtain a short exact sequence
0—1—T—C(T)—0.

Theorem 3.3 (Coburn) The natural map T — C*(S) which sends v — S is an iso-

morphism.
Proof. Consider the two short exact sequences which are
0—I1—T—C(T) —0.

and
0 — K(*(N)) — C*(S) — C(T) — 0

We have vertical arrows from the top sequence to the bottom sequence making it into a
commutative diagram. Here the map 7 — C*(S) is the map that sends v to S and the
map C(T) — C(T) is the identity map. Now an application of the five lemma yields the
proof. O
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Next, we prove the Wold decomposition of a single isometry, a result which describes
how a generic isometry looks like. Consider the isometry S with multiplicity, i.e. consider
a Hilbert space K and look at S® 1 on £*(N) ® K. Suppose U is a unitary on a different

1
Hilbert space say H;. Then [S ? 3 is an isometry on (¢*(N) ® ) @ H;. The Wold

decomposition asserts that every isometry, up to a unitary equivalence, is of this form.
Theorem 3.4 (Wold decomposition) Let H be a separable Hilbert space and V' be

an isometry on H. Then there exists Hilbert spaces KC and Hq, a unitary U on Hi and
a unitary W : H — ((*(N) @ K) & H, such that

S®1 0
U

WVW* =

First a lemma.

Lemma 3.5 Let A be a C*-algebra and I C A be an ideal. Suppose m:1 — B(H) is a
non-degenerate representation. Then there exists a unique representation ™ : A — B(H)
such that 7(x) = w(x) forx € 1.

Proof. Any non-degenerate representation can be written as a direct sum of cyclic rep-
resentations. A moment’s thought reveals that it suffices to prove the lemma when 7 is
cyclic. Thus let m be cyclic and £ € H be a cyclic vector, i.e. {m(z){:x € I} is dense in
‘H. Fix a € A. Calculate as follows to observe that for x € I,

(m(az)|m(ax)s) = (r(x"a"ax)E[E)

< |lal*(m(z")¢|€) (since 2"a’az < ||a|[*z"x)

< llal*(z (2)¢|m(2)¢).

The above calculation implies that there exists a unique bounded operator, denoted 7(a)
such that 7(a)m(x) = m(ax)€ for every x € I. If a € I then w(a)w(x) = w(azx)é =
m(a)m(x)§ for every x € I. Since {m(z)¢ : © € I} is dense in H, it follows that 7(a) =
m(a). Evaluating on the dense set {m(z){ : = € I}, it is routine to see that 7 is a
x-representation.

Uniqueness follows from the fact that {7(z)n : x € I,n € H} is total in H. This
completes the proof. O

Proof of Theorem Let V be an isometry on H. By Coburn’s theorem, there
exists a representation 7 : C*(S) — B(H) such that 7(S) = V. Let I := K(¢*(N)). Set
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Ho = w(I)H and H; = Hg. Since I is an ideal of C*(.9), it follows that Hy and H; are
invariant under w. Note that 7(x) vanishes on H; if z € I. Thus m(V)|y, is a unitary.
Set U :=7(V)|n,-

Restrict the representation 7 to I on Hy. Then x|, is non-degenerate. Hence there
exists a Hilbert space K and a unitary Wy : Ho — (*(N)® K such that Wyr(2)W§ = z®1
for z € K(¢*(N)). The representation Wyr(.)W3 and x — x® 1 are both extensions to A
of the representation Wym(.)Wy defined on I. Hence Wy (z)Wy; = x®1 for every = € A.
Define

W:Ho®@H — (P(N)@K) D H,

S®1 0

by W =Wy ® Id. Then WVW* = Wr(S)W* = 0

O

. This completes the proof.

Remark 3.6 Here we have derived Wold decomposition from Coburn’s theorem. We
could for instance first prove Wold decomposition and derive Coburn’s theorem as a

corolllary. The derivation undertaken here is more operator algebraic in nature.

We could study the continuous analogue of the Toeplitz algebra, called the Wiener-
Hopf algebra and the continuous analogue of the Wold decomposition. Howeover, the
only proof that the author knows makes essential use of groupoid techniques and giving a
proof will take us too far a field. We merely contend ourselves by describing the results.

Consider the Hilbert space L?(0,00). For ¢t > 0, define S; : L?(0,00) — L?(0,00) by

fls—=t) ift>s,
Se(f)(s) = (3.5)
0 iftt<s

for f € L*(0,00). Note that for every ¢ > 0, S; is an isometry and S;,S;, = Sy, 14,
Moreover the family {S;};>0 is strongly continuous, i.e. for f € L?(0,00), the map
[0,00) 3t — Sif € L?(0,00) is continuous. Such a family is called an isometric repre-
sentation of [0,00) or a semigroup of isometries indexed by [0,00).

Let A := {\; : t € R} be the left regular representation of R on L*(R). Denote the
orthogonal projection of L*(R) onto L?(0,00) by E. For t € R, set Wy = EXNE. Note
that for ¢ > 0, W, =V, and for t < 0, W, = V*,. For f € L'(R), let W} be the operator
on L*(0,00), defined by

W, = / FOWidt.
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The operator W; is called the Wiener-Hopf operator with symbol f. The Wiener-Hopf
algebra, denoted W[0, 00) is defined as the C*-subalgebra of B(L?(0,c0)) generated by
{Wy: feL'(R)}.

It is not difficult to show that W([0,00)) is generated by {W; : f € L'(0,00)}. The

main results are stated below.

(1) The C*-algebra of compact operators on L?*(0,00) is contained in W([0, o)) and
the quotient W([0,00))/K ~ Cy(R). That is, we have the following short exact
sequence.

0 — KC(L*(0,00)) — W([0,00)) — Co(R) — 0.

(2) Coburn’s theorem: Suppose {V; : t > 0} is a strongly continuous isometric

representation on a Hilbert space H. Then there exists a unique representation

7 : W([0,00)) — B(H) such that

w(wp) = [ rlevide
for every f € L'(0,00).
(3) Wold decomposition: Up to unitary equivalence, every isometric representation

S,@1 q
t

of [0,00) is of the form where {U; : t € R} is a strongly continuous

unitary representation of R.
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4 Measure theoretic preliminaries

Let X be a second countable locally compact Hausdorff topological space. Denote the
Borel g-algebra of X, i.e. the o-algebra generated by open subsets of X by Bx. On a
locally compact space, we always consider this Borel o-algebra. Let p be a measure on
(X, Bx). We say that pu is finite on compact sets if ;1(K) < oo for every compact K C X.
Measures which are finite on compact sets are called Radon measures. Let u be a Radon
measure on (X, Bx). Denote the algebra of continuous complex valued functions on X

with compact support by C.(X). We have the following.

(1) The measure p is regular, i.e. for every £ € By,

pu(E) =sup{u(K): K C E,K is compact}
= inf{u(V): E CV,V is open}.

(2) The fact that p is finite on compact sets implies that for f € C.(X), f is integrable
with respect to u. Moreover, C.(X) C LP(X) for every 1 < p < 0.

(3) The fact that p is regular has the consequence that C.(X) is dense in LP(X) for
every 1 < p < o0o.

A linear functional ¢ : C.(X) — C is said to be positive if f > 0 then ¢(f) > 0. Denote
the set of positive linear functionals on C.(X) by C.(X)*. Let u be a Radon measure
on (X, Bx). Define ¢, : Co.(X) — C by

bulf) = / f(@)d(z)

for f € C.(X). Then ¢, is a postive linear functional. Denote the set of Radon measures

by M(X).

Theorem 4.1 (Riesz representation theorem) The map M(X) 3> p — ¢, € Co(X)%

1S a bijection.

Push forward measure: Let (X, Bx) and (Y, By ) be measurable spaces. Suppose

i is a measure on (X, Bx) and T : X — Y is a measurable map. For E € By, define
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Then T,p is a measure on (Y, By ). The measure T,p is called the push forward of u by
T. Keep the foregoing notation. Suppose f : Y — [0, 0o is measurable. Then

[ i = [ (7o

Thus, a measurable function f : Y — C is integrable if and only if f o T is integrable

and in that case
[ s = [(roT)an

Inductive limit topology: Let X be a locally compact Hausdorff second countable
topological space. Suppose (f,) is a sequence in C.(X) and f € C.(X). We say that
fn — f in the inductive limit topology if there exists a compact set K C X such that

(1) for every n > 1, supp(f,) C K, and
(2) the sequence f, — f uniformly on X.

Suppose V' is a topological vector space and T": C.(X) — V is a linear map. We say that
T is continuous with respect to the inductive limit topology if whenever f,, is a sequence
in C.(X) which converges to f in the inductive limit topology, T'(f,) — T'(f) in V.

Exercise 4.1 Let X be a second countable locally compact Hausdorff topological space

and let p be a Radon measure on X. Prove that the functional

C.X)> £ [ Fla)duta) € ©
15 continuous with respect to the inductive limit topology.

Exercise 4.2 Let X be a second countable locally compact Hausdorff topological space
and let u be a Radon measure on X. Prove that the “natural” map C.(X) — LP(X) is

continuous with respect to the inductive limit topology for every 1 < p < oo.

Haar measure: Let us now discuss the basics of Haar measure on a locally compact
group. The letter GG stands for a locally compact, second countable, Hausdorff topological
group. The Borel o-algebra of G is denoted Bg. For s € G, let 05 : G — G be
defined by o4(t) = st and ps : G — G be defined by ps(t) = ts. For s € G, let
L, Ry : C.(G) = C.(G) be defined by



A measure p on (G, Bg) is said to be left invariant if (04).(u) = p for every s € G.

By Riesz representation theorem, a Radon measure p is left invariant if and only if

/ F(s™ M )dpt) = / F(t)du(t)

for every f € C.(G) and s € G. We accept the following theorem without proof. We

refer the reader to [9] for a proof.

Theorem 4.2 (Haar measure) Let G be a second countable locally compact Hausdorff
topological group. Then there exists a non-zero Radon measure p which is left invariant.
Moreover, if 1 and v are two non-zero left invariant Radon measures then there exists

¢ > 0 such that v = cp.

Definition 4.3 A left invariant non-zero Radon measure on G is called a Haar measure

on G.

Note that any two Haar measures differ by a scalar. Of course, we could talk about a

right Haar measure. Fix a left Haar measure p on G.
Proposition 4.4 If U is a non-empty open subset of G then u(U) > 0.

Proof. Let U be a non-empty open subset of G. Suppose that u(U) = 0. By left
invariance of p, it follows that p(zU) = 0 for every x € G. Note that {zU : z € G} is
an open cover of G. If K is a compact set then there exists x1,xs, -+ ,z, € G such that
K c J!_,z;U. This has the implication that p(K) = 0 for every compact set K. By
regularity, it follows that p(E) = 0 for every Borel set E which is a contradiction. Hence
w(U) > 0. 0

Exercise 4.3 Suppose f € C.(G) is non-negative and [ fdu = 0. Prove that f is

tdentically zero.

For s € G, let s = (ps—1).pt. Then p, is a left invariant Radon measure on G. Thus
there exists a positive scalar A(s) such that ps = A(s)u. A moment’s thought reveals
that the map G 3 s — A(s) € (0,00) does not depend on the chosen Haar measure p
and it is in fact a homomorphism. The function A is called the modular function of the

group G.

Exercise 4.4 Let i be a Haar measure on G. Prove that for f € G,

/ F(ts™)dp(t) = A(s) / F(t)du(t)
for f € C.(G) and s € G.
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Proposition 4.5 Fiz f € C.(G). The map G > s — Ls(f) € C.(G) and the map
G 3 s — Rs(f) € Ce(G) are continuous when C.(GQ) is given the inductive limit topology,
i.e. if s, = s then Ly, (f) — Ls(f) and R, (f) — Rs(f) in the inductive limit topology.

Proof. Let s, be a sequence in G such that s,, — s. Choose a compact set L such that
L contains {s, : n > 1} U {s}. Denote the support of f by K. Note that for t € G,
supp(Ly(f)) C tK. Hence supp(Ls, (f)) and supp(Ls(f)) are contained in LK and LK
is compact.

Suppose L, (f) does not converge to Ls(f) uniformly. Then there exists € > 0 and
subsequences t,,, € G such that

| L, () (Eny) = Ls(f) (En,)| = €

The above inequality implies that ¢, € LK. But LK is compact. By passing to a sub-
sequence, if necessary, we can assume that t,, converges, say to t. Then Ly, (f)(tn,) =
f(spltn,) = f(s7't). Similarly, Ly(f)(tn,) — f(s~'t) which contradicts the fact that for
every k

| Ls,,, () () = Ls(f) (tn, )| = €.

Hence the proof. O

Exercise 4.5 Suppose G acts on a locally compact space X on the left. For s € G, let
L, : Cu(X) = Cu(X) be defined by Ly(f) = f(s™'x). Show that for f € C.(X), the map
G 3 s — Ls(f) € C.(X) is continuous where C.(X) is given the inductive limit topology.

Show that for f € Co(X), the map G 5 s — Lg(f) € Co(X) is continuous where
Co(X) is given the norm topology. Here, the map Ls : Co(X) — Co(X) is defined in the

same fashion. Hint: The inclusion C.(X) — Co(X) is continuous and has dense range.
Lemma 4.6 The modular function A is continuous.

Proof. Choose f € C.(G) such that [ f(t)du(t) = 1. Note that for s € G,

[ Bestdute) = [ s auts) = Al [ re)dute) = A
The above equality together with Proposition imply that A is continuous. O

Remark 4.7 A locally compact group G is called unimodular if A = 1. Abelian groups
are clearly unimodular. Compact groups are unimodular. For. if G is compact, the image
A(G) is a compact subgroup of (0,00) and the only compact subgroup of (0,00) is {1}.
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For E € Bg, define i(FE) = p(E™'). It is clear that @ is a right invariant Haar
measure. Note that 7z is the push forward measure of  under the map s — s~'. The

proof of the next proposition is taken from [g].

Proposition 4.8 The measure ;i and p are absolutely continuous with respect to each

other. Moreover the Radon-Nikodym derivative is given by
dit

A(s)™L
T(s) = AG)
Equivalently, for f € C.(G),

[ 6 duts) = [ 15)805) )

Proof. Let I : C.(G) — C be the positive linear functional defined by the equation

= [ £ dn(s)

Let f € C.(G) and t € G be given. Define g(s) = f(s7')A(s™1). Calculate as follows to

observe that

Hence the measure v associated to the linear functional I, via Riesz representation
theorem, is left invariant. Hence there exists C' > 0 such that for f € C.(G),

[ s haw auts) = ¢ [ fs)dnts

Let f € C.(G) be given. Apply the above equality to the function s — f(s71)A(s™!) to

see that
/f )dp(s /f1 (s™)dpu(s) /f )dp(s

Hence C' = 1. This completes the proof. O
Let us end this section by describing the Haar measure for a few examples of topo-

logical groups.
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Example 4.9 The Lebesque measure on R? is a Haar measure.

Example 4.10 Let T be the unit circle. Note that T is a compact group with respect to
multiplication. We can identify C(T) as follows:

C(T)={f:R—C: fiscontinuous and f(x+1)= f(x), Vo € R}.

Define ¢ : C(T) — C by the formula

o) = / f)de

Then ¢ is a positive linear functional on C(T). Thus there exists a measure p on T such
that [ fdp = ¢(f) for every f € C(T). Show that u is a Haar measure.

Example 4.11 Let G be a countable discrete group. Then the counting measure on G
is a Haar measure on G.

Example 4.12 The ax+b-group: Let

G::{[g 11’] :a;éO,be]R}.

Show that G is a closed subgroup of GLa(R). As a set G = R\{0} x R. Consider

dadb dadb
lal a?

left invariant. Determine which one is right invariant and which one is left invariant.

the two measures

and on G. One of them s right invariant and the other is

Compute the modular function and show that the group G, also called the ax+b-group,

18 not unimodular.
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5 Group (C*-algebras

Let G be an arbitrary, locally compact second countable topological group fixed for the
rest of this section. Fix a Haar measure pu. We write [ f(s)du(s) simply as [ f(s)ds.
Recall the following formulas: for f € C.(G) and t € G,

/ F(t1s)ds = / F(s)ds

/f(st)ds - A(t)—l/f(s)ds
[ s = [ )80 s
For f,g € C.(G), let f*g: G — C be defined by
Frls) = [ Fstigte Ve = [ riergtesyas

The function f g is called the convolution of f and ¢?} Define an involution operation *

on C,(G) as follows. For f € C.(G), let f* € C.(G) be defined by f*(s) = A(s)™' f(s71).

Exercise 5.1 Show that for f,g € C.(G), f*g € C.(GQ). If K denotes the support of f
and L denotes the support of g, prove that the support of f % g is contained in KL.

Proposition 5.1 The space C.(G) with convolution as multiplication and x as involution

1S a *-algebra.

Proof. The proof is really a straightforward application of Fubini’s theorem and the
left invariance of the Haar measure. For the reader’s benefit, let us verify that the

convolution is associative and x is anti-multiplicative. Let f, g, h € C.(G) be given. For

20ne could equally convolve L' functions. But most of the time, it suffices to work with the dense
subspace C.(G)
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s € (G, calculate as follows to observe that
(F +9) < h(s) = [ (£ g)(stIne)at

/ /f (str)g >h(t‘1)dt

/ / f(sr)g(r~t)d )h(t’l)dt ( left invariance of the Haar measure)
= /f(sr) g(r= t)h(t_l)dt>d7“ (Fubini’s theorem)

/fsr (g*h)(r~Hdr
* (g N))(s).

This proves that the convolution is associative. Let f,g € C.(G) be given. For f, g €
C.(G) and s € G, calculate as follows to observe that

(f*9)"(s) = A(s)"'(f* g)(s71)

1+ [
- / g () (" s)at
(g 1) (s).

This completes the proof. O

If G is discrete the characteristic functions d; € C.(G) and {0, : s € G} spans C.(G).
Moreover in the discrete case, the multiplication and the involution of basis elements are
as follows:

65 * 515 - (5st
5F = b,

If G is not discrete the characteristic functions are no longer elements of C.(G). The
trick to overcome this is to use approximate identities instead.

Let {U,}22, be a decreasing sequence of open sets containing the identity element
e. We assume that U, is symmetric around e, i.e. U, = U,. Suppose that {U,}° is
a basis at e, i.e. given an open set U containing e, there exists N such that Uy C U.
Note that such a sequence of open sets can always be constructed. For, G is metrisable

and we can let V;, be the open ball (with respect to a metric inducing the topology of
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G) of radius + centered at e. Then set U, = V,, N V,!. For each n, choose ¢, € C.(G)
such that supp(¢n) C Uy, ¢, = ¢n, ¢ > 0 and [ ¢,(s)ds = 1. Such a sequence {¢, }52,
is called an approzimate identity of C.(G). The justification of the name approzimate

identity is due to the following proposition.

Proposition 5.2 Keep the foregoing notation. For f € C.(G), the sequence {¢, * f}2,

and the sequence {f * ¢, }°° | converges to f in the inductive limit topology.

Proof. Since ¢, is self-adjoint, it suffices to prove that ¢, * f — f in the inductive limit
topology. Let K be a compact neighbourhood at e. For large n, U,, C K and consequently

supp(pn * ) C supp(dy)supp(f) C Ksupp(f). Thus {¢, * f}22, is supported inside a
common compact set.

Let € > 0 be given. The map G >t — L;f € C.(G) is continuous when C.(G)
is given the inductive limit topology. Thus there exists N large such that for ¢t € Uy,
l|Lif — fllc < €. For s e G and n > N, calculate as follows to observe that

605 F(5) — F(5)] = /¢n — £(s)
=| [ ouos sy - / (1) s)dt‘

- U%@U@@—ﬂmﬂ
< [ outizas - fila

<e

Hence the sequence {¢, * f}52, converges to f in the inductive limit topology. O

Exercise 5.2 Suppose G is not discrete. Prove that C.(G) has no multiplicative identity.
Hint: Use the fact that C.(G) has an approzimate identity.

For f € C.(G), define ||f||1 := [|f(s)|ds. It is clear that ||f*||; = ||f]|1 for [ € C.(G).
Let f,g € C.(G) be given. Calculate as follows to observe that

[159@as< [ [ireliates)aas
- [1r60) /m s)lds)d

= / |£()]||lg||1dt( Haar measure is left invariant)

= [If1kllgl}1-
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Hence [[f * gl[ < || fIl]lgllx for f,g € Ce(G). In other words, (Ce(G), || [|1) is a normed

x-algebra.

Definition 5.3 Let A be a x-algebra and || || be a norm on A. We say that the pair
(A, || ) is a normed %-algebra if for a,b € A,

||ad]| < [|al][[b]]

[la™[| = lall.

Let (A, || ||1) be a normed x-algebra. The enveloping C*-algebra of A is defined in the
same fashion as in Section 2, the only difference here is that to define the universal C*-
seminorm, we consider only representations which are bounded w.r.t. || ||;. Let 7 : A —
B(#) be a representation. We say that 7 is bounded w.r.t. || ||; if ||7(2)|| < [|z]|; for
every x € A.

Thus, define a C*-seminorm || || on A as

||z|| :== sup{||7(z)|| : 7 is a bounded *-representation}

for x € A. Suppose that ||z|| < oo for every z € A. Let I := {z € A : ||z|| = 0}.
Then || || descends to a genuine C*-norm on A4/I and the completion of A/I is called
the enveloping C*-algebra of A, denoted C*(A). Note that x-representations of C*(.A)

are in one-one correspondence with bounded representations of A.

Definition 5.4 The full group C*-algebra, denoted C*(G), is defined as the enveloping
C*-algebra of C.(Q).

Of course, we need to show that C*(G) exists and is non-zero. This requires us to
study bounded *-representations of C.(G) in more detail. Just like in the discrete set-
ting, first we show that non-degenerate bounded *-representations of C.(G) are in 1-1

correspondence with strongly continuous unitary representations of G.

Definition 5.5 Let H be a Hilbert space and U : G — B(H) be a map. We denote the
image of an element s under U by Us. We say that U is a strongly continuous unitary

representation if
(1) for s,t € G, UUy = Ug,

(2) for s € G, Ug is a unitary, and
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(3) for & € H, the map G > s — U € H is continuous where H is given the norm
topology.

Since we will not consider unitary representations that are not strongly continuous, we
drop the modifying term ”strongly continuous”. Note that to check (3), it suffices to

check for vectors ¢ in a total set.

Exercise 5.3 Show that Condtion (3) can be replaced by the following condition.

(3)" for &,n € H, the map G 3 s — (U&|n) € C is continuous.

Example 5.6 Consider the Hilbert space L*(G,u) where u is a Haar measure. For
s € G, let )y be the unitary on L*(G) defined by the equation

A()(E) = f(s7e).

Then X := {As}seq is a unitary representation of G and is called the left reqular repre-
sentation of G. The only non-trivial thing to verify is the continuity condition.

Fiz f € C.(G). Note that the map G > s — X\ (f) € L*(G) 1is the composite of the
map G 3 s — X\ (f) € Co(G) and the inclusion C.(G) — L*(G). But both these maps
are continuous. Hence G 3 s — A\ (f) € L*(G) is continuous.

For s € G, let p, be the unitary on L*(G) defined by the equation

ps(f)() = f(ts).

Then p = {ps}sec is a unitary representation of G and is called the right reqular repre-
sentation of G. Note that \(G) and p(G) commutes with each other. It is a remarkable
fact that the commutant of A\(G) is the von Neumann algebra generated by p(G). Simi-
larly, p(G)" is the von Neumann algebra generated by \(G).

To explain the correspondence between unitary representations of G and non-degenerate
bounded x-representations of C.(G), we need to recall how to integrate operator valued
functions.

Operator valued integration: Let (X, B) be a measurable space and H be a
separable Hilbert space. A function f : X — B(#) is said to be weakly measurable if
for &,n € H, the map X >z — (f(z)¢|n) € C is measurable.

Lemma 5.7 Keep the foregoing notation. Let f : X — B(H) be weakly measurable.
Then the map X 3 x — ||f(z)|| € C is measurable.
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Proof. Let D be a countable dense subset of the unit ball of H. Note that for x € X,

1f(@)[] = sup |[(f(z)¢]n)].

ISy

Now the proof is complete. O
Let u be a measure on (X, B). A weakly measurable map f : X — B(#) is said to
be integrable w.r.t. p if [ ||f(z)||du(z)|| < co.

Proposition 5.8 Let pu be a measure on (X,B) and f: X — B(H) be integrable w.r.t.
. Then there exists a unique bounded linear operator, denoted [ f(x)du(x), such that

for&neH,
([ r@dn@)eln) = [(remdate)

| [ s@du@ll < [ @ ldute)

Proof. Let B : H x H — C be defined by B(&,n) = [{f(x)¢n)du(z). Then B is a
bounded sesquilinear form on H. Thus there exists a unique bounded linear operator,
denote it by [ f(z)du(z), such that

([ r@du@)eln) = [remdate)

for £,n € ‘H. The estimate is obvious. Hence the proof. O

for &m e H. Also,

Note the following properties about operator valued integration.

(1) Suppose f,g : X — B(H) are integrable. Then af + ¢ is integrable for every «

and in that case

J@t@ + g@yiuto) = a [ s@)nte) + [ gta)dutz).
In short, the integral is linear.

(2) Suppose f: X — B(H) is integrable and T' € B(H). Then the maps z — T f(z)
and x — f(z)T are integrable. Also , we have the equality [Tf(z)du(z) =

T(f f(x)dp(z)) and ( [ f2)dp(x)T = [ f(@)Tdp(a).

(3) Suppose f: X — B(H) is integrable. Then X > z — f(x)* € B(H) is integrable

and /f(x)*du(x) _ (/f(:c)du(x))
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Exercise 5.4 Formulate a version of the dominated convergence theorem and prove it.

Let us now return to the study of non-degenerate bounded -representations of C.(G).
Let U : G — B(#) be a unitary representation of G on H. For f € C.(G), let my(f) be
the bounded operator given by the equation

- [ svas

Note that 7 (f) exists since s — f(s)Us is weakly continuous and s — || f(s)Us|| = | f(s)]
is integrable. Clearly, for f € C.(G), ||mv (/)| < || f]]1-

Proposition 5.9 Keep the foregoing notation. The map 7wy : C.(G) — B(H) is a
bounded non-degenerate x-representation of C.(G). The representation my is continuous

w.r.t. the inductive limit topology.

Proof. First let us check that my preserves the adjoints. Let f € C.(G) and &, € H be
given. Then

(ol )eln = [ 1) U.nyds
- / AT ULl
- / A(s ™) ELf (™) U,rm)ds

- [telsvams
/ T UanlEyds

(ru (F)nlé)
- <7TU<f> &ln).

Hence 7y (f*) = mu (f)*.
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Let f,g € C.(G) and &, € H be given. Calculate as follows to observe that

(o (f * g)€lm) = / £+ g(s)(ULElm)ds

= [ ([ srste e) wchnyas
- [ 1 (/g Ué‘!nd8>dt

:/f (/g (Ureln)ds ) dt
:/f (/g HULEIU; n)ds ) dt
— [ 108U
_ / FUimu (g)€|m)dt
= (mu (f)mu(9)€ln).

Consequently, we have 7y (f*g) = my(f)mu(g). This proves that 7y is a #-representation.
We have already noted that my is bounded. The continuity w.r.t. the inductive limit
topology follows as a consequence.

Let {¢,}22, be the approximate identity constructed in Proposition Keep the
notation used in Prop. . We claim that 7y (¢,) converges strongly to Id. Let £ € H
be given. Suppose € > 0 is given. Choose N large such that for s € Uy, ||Us§ — &[] < e.
For n € H and n > N, calculate as follows to observe that

(molon)s =) = | [ oo @as = [ au(s)einas
<| [ o) = elmas
< [ ouo)lvie - llinlas

< €lln]l.

Hence for n > N, ||my(¢n)€ — £|| < e. This proves that 7y (¢,) — £ for every £ € H.
This proves our claim. Thus 7y is non-degenerate. This completes the proof. O

The representation 7y constructed in the previous proposition is called the integrated
form of U.

Exercise 5.5 Keep the notation of the previous proposition. Prove that
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(1) for s € G and f € C.(Q), Usty(f) = my(Lsf), and
(2) for s € G, my(Lspn) — Us in the strong operator topology.

Thus, if U and V' are two unitary representations of G on the same Hilbert space then

my = 7wy if and only if U =V

Next we show that every non-degenerate bounded #-representation of C.(G) is of the
form 7y for a unique unitary representation U of G. We need to invoke vector valued
integration at a crucial point and it is worthwhile to digress a bit into vector valued
integration. We start by recalling the Krein-Smulian theorem whose proof can be found

for instance in [5].

Remark 5.10 (Krein-Smulian) Let E be a separable Banach space and ¢ : E* — C
be a linear functional. Then ¢ is weak *-continuous if and only if ¢ is weak *-sequentially

continuous. We refer the reader to Corollary 12.8 of [3].

Vector valued integration: Suppose F is a separable Banach space and let (X, B)

be a measurable space.

(1) Amap f: X — E is said to be weakly measurable if ¢ o f is measurable for every
¢ e b

(2) Suppose f: X — FE is weakly measurable. Then the map X >z — ||f(x)|| € C is
measurable. This is because since F is separable, the unit ball of £* w.r.t. to the

weak *-topology is a compact metrizable space.

(3) Let p be a measure on (X, ) and f : X — E be a weakly measurable map. We say
that f is integrable w.r.t p if x — ||f(x)|| is integrable. Suppose f is integrable.
Define F' : E* — C by

Fwwa/wﬂ@mmm

An application of the Krein-Smulian theorem implies that F' is weak *-continuous.
Thus there exists a unique element, denoted [ f(z)du(z) € E, such that

w/&wwmmwa/wﬂ@mmw.

We call [ f(z)dpu(z), the integral of f w.r.t the measure p. The [ satisfies the

usual linearilty properties and the dominated convergence theorem.
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Now let p be a Haar measure on G. Let f,g € C.(G) be given. Consider g as an
element of L'(G). Note that the map G 2 s — Ls(g) € L'(G) is continuous when
LY (@) is given the norm topology. Consequently, the vector valued integral, in the sense

explained above, [ f(s)Ls(g)ds exists.

Lemma 5.11 With the foregoing notation, we have f* g = [ f(s)Ls(g)ds in L*(G).

Proof. For ¢ € L®(G), let wy : L'(G) — C be defined by wy(f) = [ f(s)¢(s)ds. The
map ¢ — wy identifies L°(G) with the dual of L'(G). Tt sufﬁces to show that for every
¢ € L™®(G), wy(f xg) = w¢<ff ds) Fix ¢ € L>®(G). Calculate as follows to

observe that

we(f xg) = /f * g(t)o(t)dt

= [ ([ 119t nasyateyi
/f /¢> (571 dt ds
/f /(b dt)ds
— [ fs)antz
— i / F(s)L

Hence the proof. O

Proposition 5.12 Let 7 : C.(G) — B(H) be a non-degenerate, bounded x-representation.
Then there exists a unique unitary representation U : G — B(H) such that m = 7y.

Proof. Uniqueness follows from Exercise |5.5, Note that {n(f){ : f € C.(G),£ € H} is
total in H. Let s € G be given. Note that for f,g € C.(G), (Lsf)* * Lsg = f* % g. This
has the consequence that for £,n € H and f,g € C.(G),

(m(Lof)Elm(Lsg)n) = (m(f)E|m(g)n)-

Hence there exists a unique unitary operator, denote it by Us, such that Usr(f){ =
n(Lsf)E for f € C.(G) and § € H. Evaluating on the total set {m(f){ : f € C.(G),€ €
H}, it is straightforward to verify that U,U; = Uy for s,t € G. To check that {Us}seq
is strongly continuous, it is sufficient to verify that for f € C.(G) and £ € H, the map
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G > s — w(Lsf)§ € H is continuous. But the last assertion follows as 7 is continuous
with respect to the inductive limit topology (for the map C.(G) > f — f € LY(Q) is
continuous).

We claim that 7 = 7. Since {7(g)§ : g € C.(G),& € H} is total in H, It suffices to
show that for f,g € C.(G) and £,n € H,

(o (f)m(g)Eln) = (w(f)m(g)&In)-

Let f,g € C.(G) and &, € H be given. Denote the linear extension of 7 to L'(G) by 7.
Define w : L'(G) — C by w(h) = (7(h)&|n). Calculate as follows to observe that

(m(f)m(g)€ln) = <7T(f * g)€[n)
*g)

/f Lsg)ds (by Lemma [5.11))

~ [ 1) a(Lgielnds

- / F(s)(Uar(g)lm) ds

/ F(5)Unds)m(9)Eln)
m(g)€ln).

This completes the proof. O

Next we show that the universal C*-norm is indeed a norm by exhibiting a faithful
representation of C.(G). Let A := {A;}sce be the left regular representation of G' on
L*(G). We denote the integrated form of the left regular representation by A itself. Thus
for f € C.(G = [ f(s)A\sds. Let f,g,h € C.(G) be given. Calculate as follows to

observe that
APgl) = [ F5)0n

- [/ g(s-ltW)dt)ds
- from o

- / (f * ) (Rt

= (f = glh).
Hence for f,g € C.(G), AM(f)g = f *g.
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Lemma 5.13 The representation X\ is faithful.

Proof. Let f € C.(G) be such that A\(f) = 0. Consider an approximate identity {¢, }°2 ;.
Considered as an element of L*(G), f * ¢, = M f)d, = 0. Hence f * ¢, = 0 in C.(G).
But f % ¢, — f in the inductive limit topology. Consequently, it follows that f = 0.
Hence A is faithful. O

An immediate consequence of the previous lemma, is that the universal C*-seminorm
on C.(G) given by

| f]| :== sup{||7v(f)|| : U is a unitary representation of G}
for f € C.(G) is indeed a norm.

Definition 5.14 The completion of C.(G) with respect to the universal C*-norm is called
the full group C*-algebra and is denoted C*(G). For f € C.(G), let

[ llrea := [ACHI

Then || ||rea ts @ C*-norm on C.(G) and its completion is called the reduced C*-algebra of
G and is denoted C* 4(G). Note that C*_,(GQ) is the C*-subalgebra of B(L*(G)) generated

red red
by (A) - | € CUG)}. The map Cu(G) 3 f — A(f) €
homomorphism from C*(G) onto C¥,,(G).

* J(G) extends to a surjective

Note that non-degenerate *-representations of C*(G) are in one-one correspondence
with bounded non-degenerate *-representations of C.(G), which in turn is in one-one

correspondence with unitary representations of GG. In other words, the map
U— ny

identifies strongly continuous unitary representations of G and non-degenerate repre-
sentations of C*(G). Moreover, this map preserves unitary equivalence, direct sum,
irreducibility, etc..... Thus, in principle, studying the representation theory of a locally
compact group is equivalent to studying the representation theory of C*(G). We prove
Raikov’s theorem, which asserts that every locally compact group has sufficiently many
irreducible representations, as an application of this principle.

We need the following which is the corollary to Theorem 1.7.2 of [I].

Proposition 5.15 Let A be a C*-algebra and a € A be non-zero. Then there exists an
irreducible representation m such that w(a) # 0. In other words, irreducible representa-

tions of A separates points of A.
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Theorem 5.16 (Raikov’s theorem) Let G be a locally compact second countable Haus-
dorff topological group. For every s € G, with s # e, there exists an irreducible unitary
representation U of G such that Ug # I1d.

Proof. Let s € G be such that s # e. Suppose, on the contrary, assume that for
every irreducible unitary representation U of G, U; = Id. Choose f € C.(G) such that
Lsf # f. Then there exists an irreducible representation 7w of C*(G), say on the Hilbert
space H, such that m(Lsf) # m(f). Let U be the unitary representation of G such that
7w = my. Then U is irreducible. The equality Usmy (f) = my(Lsf) # mu(f) which implies
that Uy # I. Hence the proof. O

Remark 5.17 As another application, we could derive that a finite group has only
finitely many irreducible unitary representations, up to unitary equivalence. Suppose
G is finite. Then C*(G) is finite dimensional. Hence C*(G) ~ M,,,(C) & M,,,(C) ®
- @® My, (C). Consequently, C*(G) has exactly r irreducible representations.

We end this section by identifying the C*-algebra of an abelian group. For the rest
of this section, let G be a locally compact, second countable, topological group which
we assume is abelian. Note that C*(G) is commutative. First, we identify the spectrum
of C*(G). Let x : G — T be a continuous map. We say that x is a character of G if
x(st) = x(s)x(t) for every s,t € G. Denote the set of characters by G. For x1,x» € G,
define x1.x2 : G — T by the formula

X1-x2(8) = x1(s)xa(s)

for s € G. Then x;1.x2 € G. With this multiplication G is an abelian group. We endow
G with the topology of uniform convergence on compact sets. The convergence of nets in
G is as follows. Let (xi) be a net in G and let X € G be given. Then y; — x if and only
if for every compact set K C G, the net (x;) converges uniformly to x on K. Endowed
with the topology of convergence on compact sets, Gisa topological group.

Set A:=C*(G). Let x € G be given. Then x is a 1-dimensional unitary representa-
tion of G. Thus, there exists a x-homomorphism denoted w, : A — C such that

wn(f) = / F(s)x(s)ds
for f € C.(G).

Theorem 5.18 With the foregoing notation, the map G > X — wy € A is a homeomor-
phism. As a consequence, it follows that C*(G) ~ Co(@).
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Exercise 5.6 Let E be a Banach space and {¢;} be a bounded net in E*. Suppose
¢ € E* and ¢; — ¢ in the weak x-topology. Let K be a compact set in E. Then ¢; — ¢

uniformly on K.

Pmof of Theorem . First we prove that x — w, is continuous. Suppose x; is a
net in G and y; — x € G. Since {wy,} is uniformly bounded, it suffices to prove that
for f € Co(G), wy,(f) = wy(f). Let f € C.(G) be given. Denote the support of f by
K. Let € > 0 be given. Choose i such that for i > iy, |x;(x) — x(z)| < € for z € K.

Calculate as follows to observe that for ¢ > i,
|, (f) = wx ()] = |/(f(5)Xi(5) — f(s)x(s))ds

< /K 1£(3)I1xi(s) = x(5)[ds

< €|l fI]s-

This proves that w,, — w,. Hence the map x — w, is continuous.

Let w be a character of A. View w as a 1-dimensional representation on the Hilbert
space C. Then there exists a unitary representation x : G — U(C) ~ T such that for
f € C.(G) = [ f(s)x(s)ds = wy(f). Since C.(G) is dense in C*(G), it follows
that w = w,. ThlS proves that X — wy is onto. The injectivity of the map follows from
Exercise 5.5

Consider a net (w,,) = wy. Then wy, -1 — w;. It suffices to prove that y;x* — 1.
Thus, with no loss of generality, we can assume that y is the trivial character. Denote
wy by wo. Let K be a compact subset of G and let € > 0 be given. Choose f € C.(G)
such that f > 0 and [ f(s)ds = 1. Note that f % x(s) =1 for every s € G.

Note that the inclusion C.(G) — A is continuous. Hence the set {Ls-1f :s € K} is
a compact subset of A. By Exercise there exists ¢ such that for ¢ > ig and s € K,

[Fxxi(s) = x(8)] = |f * xi(s) = F o x(8)| = [wy (L1 f) = wo(Le1 )] < e

Choose iy such that for i > i1, |wy,(f) —wo(f)| < €. Choose iy > ip,i;. Let ¢ > iy and
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s € G be given. Calculate as follows to observe that
£xits) =)l = | [ Fnates)ds = xls) [ rieyan
<| [ 0@ = D

<o) [ £O0u(0 - 1)
< o () = ()]

<e

Combining the above two inequalities, we see that for i > iy and s € K, |x;(s) — x(s)] <
2¢. This proves that y; — x. Hence the map G > X — wy € € Aisa homeomorphism.
This completes the proof. O

We end this section by discussing Plancherel’s theorem for abelian groups. Let G

be a locally compact second countable Hausdorff topological group which we assume is
abelian. For f € L}(Q), let F:G — C be defined by

~ [ #e1GIas

for ¥ € G. The function f is called the Fourier transform of f. Note that for f € C.(Q),
Fly) = wy(f). Hence f e Cy(G) for f € C.(G). Using the fact that C,(G) is dense in
LY@G), it follows at once that f € Cy(G) for f € LY(G).

Theorem 5.19 (Plancherel’s theorem) (1) For f € LY(G) N L*(G), f € L*(G).

(2) There exists a unique Haar measure i on G such that the map
LNG)NILXG) > f — f € L*G)

extends to a unitary map from L*(G) onto LQ(@). The unitary f — ]? is usually
denoted F.

Let o : C*(G) = Co(G) be the *-homomorphism such that for f € C.(G) and x € G,

o(F)(x) = welf) = / F(s)x(s)ds

Theorem [5.18 and the Gelfand-Naimark theorem asserts that o is well-defined and is

a x-isomorphism. Let 1 be a Haar measure on G as in Plancherel’s theorem. Let
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M : Cy(G) — B(L*(G)) be the multiplication representation, i.e. for f € Co(G) the
operator M (f) is given by
M(f)E(x) = F)EX)

for ¢ € L?(G). Then M is a faithful representation. Let A : C*(G) — B(L*(G)) be the
left regular representation. For f € C.(G) and £ € C.(G), calculate as follows to observe
that

FAHEX) = F*EX)
- / (f *€)(s)x(s)ds

Hence FA(f) = M(o(f))F for f € C.(G). Hence FA(.)F* = M oo. But Moo is a
faithful representation of C*(G). Thus we obtain the following corollary.

Corollary 5.20 The left reqular representation X : C*(G) — C*

* J(G) is an isomor-

phism.

We finish this section by stating the Pontraygin duality theorem. We refer the reader
to Chapter 4 of [9] for a proof. Let G be a locally compact abelian group. Denote the
dual group by G. For s € G, let 5: G — T be defined by

for Y € G. Then s € G. Moreover the map G 3 s — 5 € G is continuous. Raikov’s

theorem implies that the map s — 5 is indeed one-one.
Theorem 5.21 (Pontraygin duality) The map G>s—35eGisa homeomorphism.
Exercise 5.7 In this exercise, we identify the duals of a few concrete abelian groups.

ol



(1) For& € R, let x¢ : R — T be defined by x¢(x) = €*™¢. Prove that R 3 & — x¢ € R

15 a homeomorphism of topological groups.

(2) For z €T, let x, : Z — T be defined by x.(n) = 2". Show that T > z — x, € Z is

a homeomorphism of topological groups.

(3) Form € Z, let X : T — T be defined by xm(z) = 2™. Show that Z > m — Xm € T

is a homeomorphism of topological groups.

(4) Identify the duals of R, Z¢ and T¢.
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6 Crossed products

In this section, we discuss the notion of crossed products of C*-algebras associated with
actions of topological groups. We will omit the proofs as we have the discussed the case
of group C*-algebras and discrete crossed products in complete detail.

Let A be a C*-algebra and G be a locally compact second countable Hausdorff topo-
logical group. By an action of G on A, we mean a map « : G — Aut(A), the image of

an element s under « is denoted by ay, such that
(1) for s € G, as : A — A'is a x-automorphism,
(2) for s,t € G, asoay = ag, and

(3) for a € A, the map G 5 s — as(a) € A is continuous when A is given the norm
topology.

The triple (A, G, ) is called a C*-dynamical system.

Exercise 6.1 Let (A,G,«a) be a C*-dynamical system. Prove that the map
G x A>3 (s,a) = as(a) € A

18 continuous.

Example 6.1 Let X be a left G-space where X is a locally compact second countable
Hausdorff topological space. Define for s € G, as: Co(X) — Co(X) by

as(f)(z) = f(s7'x)
for f € Co(X). Then (Cy(X), G, a) is a C*-dynamical system.

Let (A, G, a) be a C*-dynamical system. Let ds be a left Haar measure on G and A be
the modular function of G. Consider the vector space C.(G, A), i.e.

C.(G,A):={f:G— A: fis continuous and compactly supported}.
Define the convolution and the involution on C.(G, A) as follows : for f,g € C.(G, A),
Frgls) = [ FOalale )
Fr(s) = Als™as(f(s71)).
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Then C.(G, A) becomes a x-algebra. For f € C.(G, A), let

I f1]x 5=/Hf(s)||ds.

With the norm defined above C.(G, A) is normed *-algebra. The crossed product A x,G
is defined as the enveloping C*-algebra of C.(G, A).

Definition 6.2 Let (A, G, a) be a C*-dynamical system. By a covariant representation
of (A,G,a) on a Hilbert space H, we mean a pair (7,U) such that

(1) 7 is a *-representation of A,
(2) U :={Us}seq is a strongly continuous representation of G, and
(3) for s € G and a € A, the covariance condition Usn(a)UZ = m(as(a)) is satisfied.

We say that (m,U) is non-degenerate if 7 is non-degenerate.
The following theorem characterises bounded x-representations of C.(G, A).

Theorem 6.3 Let (A, G, a) be a C*-dynamical system. Let (m,U) be a non-degenerate
covariant representation of (A, G,«) on a Hilbert space H. For f € C.(G, A), let

MNWU%—/ﬂﬂW%%-

Then m x U is a non-degenerate bounded *-representation of C.(G, A).

Suppose T is a bounded non-degenerate x-representation of C.(G,A) on a Hilbert
space H. Then there exists a unique covariant representation (w,U) of (A,G,a) on H
which is non-degenerate such that for f € C.(G, A),

7 = (mn 0)) = [ w(f(s)Uds.
Remark 6.4 The map
(m,U) > 7mxU

establishes a bijective correspondence between non-degenerate covariant representations
of (A,G,a) and non-degenerate bounded x-representations of C.(G,A). Moreover the

above correspondence preserves direct sum, irreducibility etc.....
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For f € C.(G, A), let

1= sup{[[(m > U)()] = (. U)

is a non-degenerate covariant representation of (A, G, «a)}.

We will show that || || is indeed a genuine C*-norm on C.(G, A). The completion of
C.(G, A) with respect to this universal norm is called the full crossed product and is
denoted A x G.

Next we exhibit a concrete covariant representation of (A, G, «). Let 7 be a faithful
non-degenerate x-representation of A on a Hilbert space H. Set H = L*(G,H). Recall
that H consists of weakly measurable square integrable H-valued functions. The inner

product on H is given by

(Eln) = / (E(s)ln(s))ds

for &,n € H. The proof that H is a Hilbert space is similar to the case when # = C.
For s € G and a € A, let \; and 7(a) be the bounded operators on H defined by

Then (7, A) is a covariant representation of (A, G, «).
Exercise 6.2 Show that (7, \) is non-degenerate.
Proposition 6.5 The representation T X X is a faithful representation of C.(G, A).

Proof. Let f € C.(G, A) be such that (7 x A)(f) = 0. For {,n € C.(G) and u,v € H, let
£o(s) = &(s)u and 19(s) = n(s)v. Note that &, € H. Set K(s,t) = (m(a; " (f(s)))ulv).
Calculate as follows to observe that

(7 (f)&olno)
7T(f 350‘770>

DAo) (Dlolt)) ) ds
s>>>s<s-1t>u|n<t>v>dt)ds

(s7H)K(s, t)ds> dt.
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Since n is arbitrary and ¢ — [ £(s™')K (s, t)ds is continuous, it follows that for every ¢,

/ £(s ) K (s, £)ds — 0.

The arbitrariness of £ implies K (s,t) = 0 for every s,¢. Hence K(s,e) = 0. This implies
(m(f(s))ulv) = 0 for every s, u,v € H. But 7 is faithful and hence f(s) = 0 for every
s € G. This implies that f = 0 and the proof is complete. O
The above proposition allows us to define the reduced C*-norm on C.(G, A). For
feC.(G,A), let
1 llvea = 16 0 (A

The faithfulness of 7 x A implies that || ||;eq is @ C*-norm on C.(G, A). Moreover for
f € Cu(G, A), the reduced C*-norm of f is atmost the full C*-norm of f, i.e.

[ fllrea < 11]-

The completion of C.(G, A) with respect to the norm || ||,eq is called the reduced crossed
product and is denoted A X,.qG. There is a natural surjection from A x G onto A X,..q G
which need not be one-one if we don’t assume amenability hypothesis.

A priori it looks as if the reduced C*-norm depends on the chosen faithful represen-
tation m. But it is in fact independent of the chosen representation. The proof of this
requires us to take a detour into the theory of Hilbert C*-modules which we undertake

next.
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7 Hilbert C*-modules

Hilbert C*-modules are analogues of Hilbert spaces where the inner product takes values
in a C*-algebra. Rieffel in his seminar paper [12] succesfully demonstrated the use of
Hilbert C*-modules to understand imprimitivity theorems due to Mackey. Kasparov’s
development of KK-theory utilises Hilbert C*-modules in an essential way and is now an
indispensable tool in several areas of operator algebras. For more on K or KK-theory,
see [3] and [10].

Let B be a C*-algebra. Suppose E is a vector space. We say that E is a right

B-module if E has a right B-action satisfying the usual consistency conditions.

Definition 7.1 Let E be a right B-module. By a B-valued inner product on E, we mean
amap (| ): Ex E — B such that

(1) (| ) is linear in the second variable and conjugate linear in the first variable,
(2) forbe B and x,y € E, (x|yb) = (x|y)b,
(3) forz,y € E, (z|ly)* = (y|z),
(4) for x € E, (z|x) is a positive element of B, and
(5) if (x|z) =0 then x = 0.
Let E be a right B-module with a B-valued inner product. For x € F, set
]| = [I(zlz)]]2.
Proposition 7.2 (Cauchy-Schwarz inequality) For z,y € E, ||[(z|y)|| < ||=||||y]]-

Proof. Let p be a state on B. The map E x E > (e, f) — p({e|f)) € C is a semi-definite
inner product on F. Applying the usual Cauchy-Schwarz inequality by taking e = z(z|y)

and f =y, we see

p((z|y)"(z|y)) = p({e|f))
pl{ele))2p({fIf))z
p({zly)™(wz) (x]y)) 2 p((yly))?

< le/lllyllp((aly) (zly))?

IA

IN
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On simplification, we get p({z|y)*(z|y)) < [|z||?||y||? for every state p. But for a positive
element a € B,

lla|| = sup{p(a) : p is a state of B}.

Therefore ||(z[y)||* = [[{x|y)"(z[y)]| < [|x|[*[ly]|*. Taking square roots, we have [|{z|y)|| <
[|z|||ly||- The proof is complete. 0

Exercise 7.1 Show that for x € E and b € B, ||xb|| < ||z||||]]-

Once we have the Cauchy-Schwarz inequality, it is proved as in the Hilbert space setting
that || || defines a norm on E.

Definition 7.3 Let E be a right B-module with a B-valued inner product. We say that
E is a Hilbert B-module if E is complete with respect to the norm || || where for x € E,
1
[lz[| = [[{z]) 5]]>-
Example 7.4 Hilbert C-modules are just Hilbert spaces. The only difference is that now

the inner product is linear in the second variable as opposed to our usual convention.

Example 7.5 Let B be a C*-algebra and E := B. The right multiplication by B makes
E into a right B-module. For x,y € E, define (x|y) = x*y. Then E is a Hilbert B-

module. The norm on E induced by the inner product coincides with the C*-norm on

B.

Example 7.6 Let B be a C*-algebra. Set

Hp :={(by,bg,-,): Zb;bn converges in B}.

n=1
The C*-algebra B acts on the right by coordinatewise multiplication. Forb := (by, by, bs, -+ )

and ¢ = (c1,co,C3,+ -+ ), set
(blc) :== Zb;cn.
n=1
Then Hg is a Hilbert B-module.

Definition 7.7 Let E; and E, be Hilbert B-modules. Suppose T : E1 — FEy is a map.
We say that T is adjointable with adjoint T* if there exists a map (which is necessarily
unique) T* : Ey — Ey such that

(Tx|y) = (=|T"y)

for x € Ey and y € E,. The set of adjointable operators from E; to Es is denoted by
Lp(Ey, Ey). When Ey = Ey = E, we write Lg(F, E) as Lp(E).
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Exercise 7.2 Let T : Fy — FE5 be an adjointable operator. Show that
(1) T is C-linear,
(2) the map T is B-linear, and
(3) the map T : Ey — E5 is bounded.

Show that Lg(E4, Ey) is a norm closed subspace of B(E, Es).

Proposition 7.8 Let E be a Hilbert B-module. Then Lg(E) is a C*-algebra.

Proof. The only thing that requires proof is that the operator norm satisfies the C*-
identity. First note that by the Cauchy-Schwarz inequality, we have for x € FE,

[|z[| = sup{[|(z|w)[] - [lyl| = 1}.

For T' € Lg(E), ||T|| = sup{|[(Tx|y)|| : ||z]| = 1 = ||y||}. Thus, it is clear that
[|T*|| = ||T'||. Since the operator norm is submultiplicative, it follows that for ' € Lg(FE),
|T*T|| < ||IT]>.

Let T € Lg(E) be given. Then

171" = sup{||T||* - [|2|| = 1}
= sup{|l(TaIT2)]| : |2]] = 1}
— sup{|l(T*Tef2)]|  flal| = 1}
< ||T*T|| ( by Cauchy-Schwarz inequality).
The proof is now complete. O

Unlike in the case of Hilbert spaces, it is not true that bounded operators between

Hilbert modules are adjointable. Here is an example.

Example 7.9 Let B := C[0,1] and J := {f € B : f(0) = 0}. Let By = J and
Ey = B. Both Ey and E5 are Hilbert B-modules. Consider the inclusion T : Ey — Es,
i.e. T(x) =x. Then T is not adjointable. Suppose not and let S be the adjoint of T.
Let h:= S(1). Then h € J. Calculate as follows to observe that for f € J,

F=(T(H)
= (f1S(1))
= fh.

In other words, h is a multiplicative identity of the non-unital C*-algebra J which is
absurd.
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Remark 7.10 One needs to exercise caution while dealing with Hilbert modules. For
example, it is not true that if F is a submodule of E then E = F @& F+. Can you

construct a counterexample ?

In practice, it is essential to complete right B-modules to get genuine Hilbert modules.

The following proposition helps in achieving this.

Proposition 7.11 Let By be a dense x-subalgebra of a C*-algebra B. Suppose Ey is a
right Bo-module with a By-valued inner product. Ey 1s usually called a pre-Hilbert By-
module. Denote the completion of Ey by E. Then the By-module structure on Eqy lifts

uniquely to make E into a Hilbert B-module.

Proof. The proof is routine and makes essential use of Exercise [7.1 O
Let us construct the Hilbert module of interest associated to a C*-dynamical system.

Suppose (A4, G, a) is a C*-dynamical system. Let Ey := C.(G,A). Then Ej is a vector

space. We make Fj into a right A-module as follows. For f € Ey and a € A, define

(f.a)(s) := f(s)as(a).

The A-valued inner product on Ej is given by

(Flgha = (" * 9)(e) = / Als a7 )as(g(s™))ds.

Verify that Ej is a pre-Hilbert A-module. We obtain a genuine Hilbert A-module upon
completion which we denote by F.
For a € A, let is(a) : Ey — Ey be defined by

For s € G, let ig(s) : Fg — Ep be defined by
ia(s)f(t) = as(f(s™'t)).

Exercise 7.3 For a € A and s € G, show that is(a) and ic(s) extends to bounded
operator on E. We denote the extensions by the same symbols. Verify thatia(a)* = ia(a)
and ig(s)* = ig(s™1). Prove that

(1) the map ia: A — La(FE) is a non-degenerate x-representation,

(2) the map s — ig(s) is a strongly continuous unitary representation of G on E, and
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(3) for s € G and a € A, the covariance condition ig(s)ia(a)ic(s)* = ia(as(a)) is
satisfied.

In short, the pair (ia,ig) is a covariant representation of (A,G,«) on the Hilbert A-
module E.

Just like we can integrate covariant representations on a Hilbert space to obtain a
representation of the crossed product on the same Hilbert space, we could do the same
with Hilbert modules. To do so however requires us to discuss vector valued integration
one more time.

Suppose F is a Hilbert B-module. For z € E, define a seminorm || ||, on L(E) by
|T||l. = ||Tx|| + ||T*z||. The topology on Lg(F) induced by the family of seminorms
{I| ||z : = € E} is called the topology of *-strong convergence on Lg(F). Let (7;) be
a net in Lg(E) and T € Lp(FE) be given. Then T; — T in the topology of #-strong
convergence if and only if for every x € X, Tix — Tx and Tz — T™z.

Proposition 7.12 Let X be a locally compact second countable Hausdorff topological
space and p be a Radon measure on X. Let f : X — Lp(E) be continuous when
Lp(E) is given the topology of x-strong convergence. Suppose that the map X > x —
[|f(z)|] € [0,00) is integrable. Then there exists a unique adjointable operator on E

denoted [ f(x)du(x) such that for u,v € E,

([ r@inta))udo = [ (r@pulo)duto)

Proof. Fix u € E. The map X 3> x — f(x)u € E is continuous and integrable. Define

([ s@in)u = [ swuduto)

The assertion follows from the defining properties of vector valued integration. O
Remark 7.13 Theorem stays true with Hilbert spaces replaced by Hilbert modules.

Interior tensor product: One of the most important construction in Hilbert mod-
ules is the notion of interior tensor product which we discuss next. Let E be a Hilbert
B-module and F' be a Hilbert C-module. Suppose 7 : B — L¢(F) is a x-homomorphism.
Think of F' as a left B-module and F as a right B-module. Consider the algebraic tensor
product X := E ®p F. Note that C' acts naturally on the right on X. Moreover, in X,
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we have the equality eb® f =e®@w(b)f fore € E, f € F and b € B. Define a C-valued

semi-definite inner product on X by the formula

(e1 ® filea ® fo) = (film({e1]e2)) f2)- (7.6)

The fact that the inner product is positive requires a bit of work.

Lemma 7.14 Let E be a Hilbert B-module. Suppose T € Lp(E). The following are

equivalent.
(1) T is a positive element of Lp(E).
(2) For every x € E, (Tx|z) > 0.
Proof. Suppose (1) holds. Write T' = S*S with S € Lg(FE). Then for x € E,
(Tx|z) = (S*Szx|x) = (Sx|Sx) > 0.

This proves that (1) implies (2).

Now suppose that (2) holds. Note that for z € E, (Tz|z) = (Tz|z)* = (x|Tx). For
z,y € E, let [x,y] = (Tzly) and [z,y] = (z|Ty). Both [, ] and [, | are sesquilinear
B-valued forms and [z, z] = [z, x] for x € E. By the polarisation identity, it follows that
the forms [, | and [, |' agree. Consequently (Tx|y) = (z|Ty). In other words, T" = T*.

Write T'= R — S with R, S > 0 and SR = RS = 0. For x € E, calculate as follows
to observe that

0 < (T'Sx|Sx)
< —(S°z|z)

< 0( as S® is positive ).

Hence (S3x|z) = 0 for every x € E. By the polarisation identity, it follows that (S%z|y) =
0 for z,y € E. Hence S® = 0 which forces S = 0. Thus 7" = R > 0. This completes the
proof. O

Exercise 7.4 Let T € L(E) be such that T > 0. Prove that
T = sup{|[¢x|Tx)]| - [|2[| = 1}

Lemma 7.15 Let E be a Hilbert B-module and ey, es,--- ,e, € E be given. Then the

matriz ((e;le;)) is a positive element of M, (B).
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Proof. Consider the Hilbert B-module B" := B® B @ ---® B. Think of elements of B"
as column vectors. For A € M,,(B), let L, : B" — B™ be defined by

La(z) = Ax.

Then L,4 is an adjointable operator on B™ and the map M, (B) > A — La € Lg(B") is
an injective x-homomorphism (Justify!).

Let A := ({(e;]e;)). It suffices to show that Ly is positive. In view of Lemma [7.14] it
suffices to show that (x|L4(z)) > 0. Let 2 := (by, by, - -+ ,b,)" be given. Note that

(x|La(x Zb*ZeZ]eJ ):Zezb\ej Zeb\Ze”

J=1 1,

This completes the proof. O

We now prove that Eq. defines a positive semi-definite inner product. Keep
the notation used in the paragraph preceding Eq. Let z := Y " e, ® f; be an
arbitrary element in X. The representation m “amplifies naturally” to a representation
of M,(B) on the Hilbert C-module F" := F & F & --- & F. Since ((e;]e;)) is a positive
element in M, (B), the operator T := (m({e;|e;))) is a positive operator on F". Set
f="(f1,f2, -+, fn)". Then

(alz) = (FITSf) > 0.

Thus ( | ) defines a positive semi-definite C-valued inner product on X. We mod out
the null vectors and complete it to obtain a genuine Hilbert C'-module. We denote the
resulting C-module by £ ®, F'. The module F ®, F' is called the interior tensor product

or the internal tensor product of £ and F.

Proposition 7.16 Keep the foregoing notation. Suppose T € Lg(E). Then there exists
a unique adjointable operator denoted T ® 1 on E ®, F such that

Tel)exf)=Tex f
foree E and f € F.

Proof. Let x := """  €; ® f; be given. We claim that

S Uln((TedTe) ) < TIPS (hln(lesdes)) ;) (7.7
i3 i,J

We leave it to the reader to convince herself that once Eq. [7.7)is established, the con-
clusion follows. Argue as in the previous lemma, with the aid of the next exercise, that
the matrix ((Te;|Te;)) < ||T||*({eile;)).
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Let A := (7((Te;|Te;))) and B := ||T||*(7({e;]e;))). Then A and B are adjointable
operators on F™ and A < B. Set f := (f1, fo, "+, fn)'. Inequality follows from the
fact that (f|Af) < (f|Bf). This completes the proof. O

Exercise 7.5 Let E be a Hilbert B-module and T € Lg(FE) be given. Prove that for
r € E, (Tz|Tx) < ||T|*(z|z).

Hint: Write ||T||? — T*T as S*S for some S € Lp(E).

Remark 7.17 We have the following.

(1) The map Lg(E) 5T - T ®1 € L(F ®; F) is a x-homomorphism. If © is
injective then the map T — T ® 1 is injective.

(2) Suppose (T;) is a bounded net which converges to T in the x-strong topology. Then
T,21—T®1 in the x-strong topology.

Proposition leads us to a very important notion of induced representations due
to Rieffel ([12]). The data given is as follows. Suppose E is a Hilbert B-module and
let ¢ : A — Lp(F) be a representation. F is usually called a Hilbert A-B bimodule.
Suppose 7 is a representation of B on a Hilbert space H. Consider the Hilbert space
H, = E®; H. For a € A, define Ind(m)(a) on H, by

Ind(m)(a) = ¢(a) @ 1.

Then Ind(m) is a representation of A on the Hilbert space H,. The representation Ind(m)
is called the representation induced by 7 via the bimodule F.

Suppose m; and 7y are representations of B on the Hilbert spaces H; and H,. Suppose
T : Hiy — Hz is an intertwiner, i.e. T'm(b) = ma(b)T. Because T' commutes with the
action of B, the map 1 ® T is well-defined first on the algebraic level and then extends
to give a genuine adjointable operator from F ®,, H; — E ®, Ho. It is clear that 1® T
commutes with the left action of A. Or in other words, 1 ® T intertwines Ind(m) and
Ind(my).

Summarising the above discussion, we observe that
m — Ind(m)

is a functor from the category of representations of B to the category of representations
of A.
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Remark 7.18 We can try to seek an inverse for the above functor which leads us to the
notion of Morita equivalence which we will discuss later in the course. The idea is that
we can define an inverse if there is a B-A Hilbert bimodule F such that E g FF = A
and F @4 E = B as bimodules. Such bimodules exist if A and B are Morita equivalent
in the sense of Rieffel (see the Section 10). Rieffel’s induction then ensures that the
representation theory of A and that of B are the same.

The first remarkable result due to Rieffel is that Co(G/H) x G is Morita equivalent
to C*(H) where G is a locally compact group and H is a closed subgroup of G.

Let us return back to our original motivation for considering Hilbert C*-modules
which is to establish that the reduced C*-norm does not depend on the choice of the
faithful representation. Let (A, G, ) be a C*-dynamical system. Let Ey := C.(G, A) be
the pre-Hilbert A-module constructed earlier. The inner product and the right action of

A are given by

for f,g € Ey and a € A. Denote the completion of Ey by E.
Let (i, ic) be the covariant representation of (A, G, «) on E as in Exercise[7.3] Recall

that the formulas for 74 and i are given by

-~
Q
~~
w
SN—
~
—~
~
SN—
Q
v
—
-
—~
»
|
—
~
SN—
S—

for f € Fy,a € Aand s € G.
Fix a faithful non-degenerate representation m of A on H. Set H = L*(G,H). For
a € Aand s € G, let T and A, be the bounded operators on H defined by

AsE(t) = E(s7')

For f € C.(G,A), the reduced C*-norm is ||(7 x A)(f)||. We prove that ||f||,ea =
[|(ia X ig)(f)|| and the right side does not depend on the representation 7.

The trick is to use Rieffel’s induction. Note that 7 is a representation of A on H.
Thus we can form the interior tensor product E ®, H which is a Hilbert space and we

show that the latter Hilbert space is identified with H by a specific unitary. Once this
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identification is made then we show is(a)®1 = 7(a) and ig(s) ® 1 = A;. On integration,
we get for f € C.(G,A), (ia xig)(f) ®1 = (7 x N)(f). Since 7 is faithful , the map
Lg(E)>T -T®1 € B(ﬁ) is 1-1 and hence preserves the norm. Consequently,

[| flrea = [|(ia X ig)(f)||- The verification is carried out in the next exercise.

Exercise 7.6 Assume that G is discrete. Show that there exists a unique unitary oper-
ator U : E @, H — (*(G) @ H such that

U(la® b)) ®&) =6 @n(a; (a))k.

Prove that U(ia(a) ® 1)U* = 7(a) and U(ig(s) @ HYU* = s fora € A and s € G.
Conclude that for f € C.(G,A),

1 lrea = 1[(ia > ia) (F)I]

Treat the topological case similarly.
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8 Irreducible representations of the Heisenberg group

As an application of the material developed so far, we determine in this section, the
irreducible representations of the Heisenberg group. Let n > 1 and set Hy, 11 = R™ X
R™ x R. The group law on Hs,; is defined by

(x1,y1, 21) (T2, Yo, 22) := (21 + T2, Y1 + Yo, 21 + 22 + (T1|y2)).

Verify that Hs, 1 together with the group law defined above is indeed a topological
group.

Exercise 8.1 Let Z be the center of Hopy1. Show that Z = {(0,0,z2) : z € R}.

Proposition 8.1 (Schur’s lemma) Let G be a locally compact group and m : G —
U(H) be a strongly continuous unitary representation. Suppose that m is irreducible.
Then the commutant m(G) = C.

Proof. Note that 7(G)" is a von-Neumann algebra. The irreducibility of 7 implies that
the only projections in 7(G)" are 0 and 1. However, a von-Neumann algebra is generated

by its set of projections. Consequently, 7(G)" = C. O

Proposition 8.2 Suppose 7 : Hayi1 — U(H) be a strongly continuous unitary repre-
sentation. Assume that 7 is irreducible. Then there exists a unique A € R such that for
z €R,

7(0,0, 2) = e

For x € R" and y € R", set U, := m(x,0,0) and V,, = m(0,y,0). Then {U}rern and

{Vy }yern are strongly continuous group of unitaries such that
UV, = ey, i, (8.8)

for x € R" and y € R". Moreover the commutant {U,,V, : z,y € R"} =C.

Conversely, suppose {Uy}zern and {V,}yern are strongly continuous unitary repre-
sentations on a Hilbert space H which satisfy Eq. . Moreover suppose {U,,V, : x,y €
R"} = C. For (x,y,2) € Hapy1, set

m(z,y, 2) = eV, U,.

Then 7 defines an irreducible representation of Hop.q.
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Proof. Note that 7(0, 0, z) commutes with 7(Hy, 1) for every z € R"™. By Schur’s lemma,
it follows that 7(0,0,2) € T. Since 7 is a strongly continuous representation, it follows
that the map R 5 2 — 7(0,0, 2) € T is a continuous group homomorphism. Hence there
exists a unique A € R such that 7(0,0, 2) = e**.

Note that in Hoy, 1,

(xv 0, O)(Ov Y, O) = (07 Y, 0)(IB, 0, O)(()? 0, <£E|y>)

Hence Eq. is satisfied. Note that m(Hony1) = {Us,V, : 7,y € R*}. Since 7 is
irreducible, it follows that {U,,V, : x,y € R"}' = C. The proof of the converse part is

routine. O

Remark 8.3 The relation when A = 1 is usually called the “Weyl commutation”

relation.

Definition 8.4 Let H be a Hilbert space and U = {U,}zern and V = {V,}yern be
strongly continuous group of unitaries. We say that the pair (U, V') is a Weyl family of
unitaries with phase factor \ if Fq. is satisfied. We call the pair (U, V') irreducible
if the commutant {U,,V, : x,y € R"} =

In view of Prop. the problem of determining the irreducible representations of
the Heisenberg group reduces to the determination of Weyl family of unitaries which
are irreducible. Case 1: A = 0 In this case, a Weyl family (U, V) corresponds to
two unitary representations of R™ which commute. Equivalently, in this case, a Weyl
family corresponds to a unitary representation of the cartesian product R™ x R™. Thus
irreducible Weyl families are precisely the irreducible representations of the abelian group
R™ x R™ or in other words the characters of R?". The dual of R?" is R?".

Let 4 € R® be given. Write p := (u1, pto) with g, pe € R™. Set U, := e!ml?)
and V, := €2 Then (U, V) is an irreducible Weyl family of unitaries on the one
dimensional Hilbert space C with phase factor A = 0. Up to unitary equivalence, every
such Weyl family arises this way. Moreover for distinct values of u, the corresponding
Weyl families are inequivalent.

The non-trivial case is when A # 0. For the rest of our discussion, A will be a fixed
non-zero real number. The first order of business is to exhibit an irreducible Weyl family
with phase factor A\. Let H := L*(R"). For z,y € R", let U, and V, be the unitary
operators on ‘H defined by the following equation

Upf(t) == f(t — )
%f(t) — e*i/\<y|t>f(t)
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Proposition 8.5 Keep the foregoing notation. The pair (U, V') is an irreducible Weyl
family with phase factor \.

Proof. 1t is routine to verify that U and V' are strongly continuous unitary representations
of R" and they satisfy Eq. [8.8f Consider L>(R") and let M : L*°(R") — B(H) be the
multiplication representation, i.e. for ¢ € L*(R") and f € H,

Note that L>*(R"™) 3 ¢ — M(¢) € B(H) is continuous when L>*(R") is given the weak
*-topology (after identifying L°°(R") with the dual of L'(R")) and when B(#) is given
the weak operator topology.

Claim: The linear span of {e=?W" .y € R"} is weak *-dense in L>(R™). Suppose
not. Then there exists a non-zero f € L'(R™) such that for y € R",

/ f(t)e g = 0,

In other words, the Fourier transform of f is zero which in turn implies f = 0. This is a
contradiction. This proves our claim.

Suppose T" € B(#) is such that TU, = U,T and TV, = V,T for z,y € R". The
density of {e™Wh : ¢ € R"} in L=(R") implies that TM(¢) = M(¢)T for every
¢ € L*(R"™). It is well known that the commutant of L>*(R"™) is L>*(R™) (see, for
instance, Theorem 2.2.1 of [1]). Hence there exists ¢ € L>(R") such that 7' = M(¢).

Now the equation U,TU} = T implies that for every xz € R", ¢(t + z) = ¢(t) for
almost all £ € R™. Let wy : C.(R") — R be defined by

wolf) = [ Fo(0e

To show that ¢ is a scalar, it suffices to show that wy is a scalar multiple of the linear
functional I : C.(R") — C defined by the equation

1) = [ e

Let g € C.(R™) be such that I(g) = 0. Choose f € C.(R") such that [ f(t)dt = 1.
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Calculate as follows to observe that
wolg) = [ 16)( [ awotoinds
= [ 1) [ ottt ~ s)avyas
= [otor([ 1ot~ s)asya
= [otor( [ fs)o(=s)ds)i
= ([ stan( [ ro(-sis
0.

Hence Ker(I) C Ker(wy). This shows that wy is a scalar multiple of I. Hence ¢ is a
scalar and consequently T is a scalar. This proves that the commutant {U,,V, : z,y €
R™} = C. The proof is now complete. O

Theorem 8.6 (Stone-von Neumann) Let (U,V) be an irreducible Weyl family of
unitaries with phase factor X on a Hilbert space H. Denote the Weyl family constructed
in Pmposz’tion by (U,V). Then (U, V) is unitarily equivalent to (U,V). This means
that there exists a unitary T : H — H such that TﬁxT* =U, and TVyT* =V,.

The proof of Stone-von Neumann’s theorem relies on the following steps.

(1) First we show that Weyl family of unitaries are in 1-1 correspondence with covariant
representations of the dynamical system (Co(R"),R", ) where the action « is by

translations. Moreover the correspondence respects irreducibility.

(2) Thus the problem reduces to the determination of irreducible covariant represen-
tations of (Co(R™),R" ) or in other words determining the irreducible represen-
tations of the crossed product Cp(R"™) x R™.

(3) Next, we show that Cy(R™) x R is isomorphic to K(L*(R"))F] Since the alge-
bra of compact operators has only one irreducible representation, up to unitary
equivalence, the theorem follows.

For y € R”, let «, : C*(R™) — C*(R") be defined by

ay f(x) = e MW f(x).

3For the discrete version, see Prop. [2.17]
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It is routine to verify that o := {a,}yern is an action of R” on C*(R"). Let (U,V) be

a Weyl family of unitaries with phase factor A\. Denote the integrated form of U by my.

Then (7, V') is a covariant representation of the dynamical system (C*(R"),R", «v).
Conversely, suppose (7, V') is a non-degenerate covariant representation of (C*(R"™), R", ).

Let U := {U,}+ern be the strongly continuous unitary representation of R"™ whose inte-

grated form is 7. Note that (7, V) is covariant implies that for y € R™, f € C.(R") and

vectors &,n, we have

/ F @) VU,V ey = / e~ f () (U €|

Since the above equality is true for every f € C.(R"), it follows that V, U, V" = e~ T,
for z,y € R™. In other words, it follows that (U, V') is a Weyl family of unitaries with
phase factor .

Exercise 8.2 Prove that the correspondence (U, V') — (my, V') preserves irreducibility.

Since the dual of R™ is R", it follows from Gelfand-Naimark theorem (see Theorem [5.18))
that the map o : C*(R™) — Cy(R") defined by the equation

o(f)(s) = / N6 f (1)

is an isomorphism. Note that for y € R" and f € C.(R"), o(oy(f)) = L,(o(f)) where
for ¢ € Co(R™), Ly(9)(s) = g(s —y). Thus the dynamical system (C*(R"),R", «a) is
isomorphic to (Cy(R™),R™, L). Thus, the final step in the proof of Stone-von Neumann
theorem is the fact that Cy(R™) x R™ is isomorphic to (L?(R")). We prove the latter
assertion for a general locally compact groupﬁ

Let A be a C*-algebra and A be a dense *-algebra of A. Suppose X is a second
countable locally compact Hausdorff topological space. For a € A and f € C.(G), let

f®ae€ C.(X,A) be defined by
(f ®a)(z) == f(z)a.

Proposition 8.7 The linear span of {f ® a : f € Co(X),a € A} is dense in C.(X, A)

with respect to the inductive limit topology.

4We give a proof only in the unimodular case and leave the intricacies with the modular function to
the interested reader.
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Proof. Let F' € C.(X,A) be given. Denote the support of F' by K. Choose an open
set U such that K C U and U is compact. Fix n > 1. For # € K, choose an open
set U, C U such that for y € U,, [|[F(y) — F(z)|| < 5. Choose a, € A such that
|F(x) — a,|] < 5. Note that for y € Uy, ||[F(y) — a,|| < £. The family {U, : = € K}
covers K. Choose a finite subcover {U,, : i = 1,2,--- /N}. For ¢ = 1,2,--- /N, let

a; = ag,. Let {¢1, P2, -+ , ¢, } be a family in C.(X) such that
(a) supp(¢;) C Uy, and 0 < ¢; < 1, and
(b) for z € K, >N ¢i(x) = 1.

Since ZZ]L ¢ > 0 on K and K is a compact set, it follows that there exists an open
subset V' C U such that K C V/, Zfil ¢ >0onV and V is compact. Let xy € C.(X) be
such that 0 <y <1, x =1 on K and supp(x) C V. Set ¢ := ﬁ

Set F,, = Zf\il Y¢; @ a;. Then supp(F,) C U. Let x € X be given. Calculate as

follows to observe that

1F(z) = Fu(@)]| = |] ZM%)@(@’)(F@) sl

< ¢(I)Z¢z’($)l|F(9«“) — aill
Y(x) Y dix) (since ||F(z) —aif| < % if ¢i(x) > 0)

i=1

<

<

Si= 3~

This shows that F,, — F' in the inductive limit topology and the proof is complete. O
Let X be a locally compact second countable Hausdorff space on which G' acts on
the left. For s € G and f € Cy(X), define

as(f)(z) = f(s™ a).

Then «a := {a;}see is an action of G on Cy(X). Consider the vector space C.(X X G).
The vector space C.(X x G) has a x-algebra structure where the multiplication and

involution are defined by

FxG(x,s) = /F(x,t)G(tlx,tls)dt

F*(z,5) = A(s) ' F(s7 1z, s71).
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for F,G € Co(X x G).
For F € Cu(X x G), let F € C,(G, Co(X)) be defined by

F(s)(x) := F(x,s).

The map C.(X x G) 3 F — F € C.(G,Cy(X)) is an embedding and preserves the
x-algebra structure. By Prop. [8.7} it follows that C.(X x G) is dense in C.(G, Cy(X)).
Consequently, C.(X x G) is a dense *-subalgebra of the crossed product Cy(X) x G.

Theorem 8.8 Let G be a unimodular group. The crossed product Co(G) X G is isomor-
phic to K(L*(Q@)).

Proof. In view of Exercise [L.2] it suffices to exhibit a family {0;, : f,9 € C.(G)} in
Co(G) x G such that

(1) for fi, f2,91,92 € OC(G>’ 0f17910f2792 = <f2|gl>‘9f1,g2v
(2) for f,9 € C(G), 0, =04, and
(3) the linear span of {0, : f,g € C.(G)} is dense in Cy(G) x G.

For f,g € C.(G), let 05, € C.(X x G) be defined by

Opg(x,s) = fz)g(s™'x).

Here X = G. It is routine to check (1) and (2). By Prop. and the fact that the map
X xG>3 (z,8) = (r,s'2) = X x X is a homeomorphism, it follows that the linear
span of {6, : f,g € C.(G)} is dense in Cy(G) x G. The proof is now complete. O

The reader interested to know more about the history of Stone-von Neumann theorem
and its role in subsequent developments in the C*-algebra should consult the excellent

essay [14] by Jonathan Rosenberg.
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9 The non-commutative torus Ay

In this section, we discuss the simplicity of the C*-algebra, called the non-commutative
torus, associated to irrational rotations on the circle. The non-commutative torus is

probably the widely studied example in the field of non-commutative geometry.

Definition 9.1 Let § € R be given. The non-commutative torus Ag is the universal

C*-algebra generated by two unitaries u,v such that

w = ey,

The reason Ay is called the non-commutative torus is because when # = 0, Ay is iso-
morphic to C(T?). First we realise Ag as a crossed product. Let o : C(T) — C(T) be
defined by

a(f)(z) = f(e™2).
Let @ := z € C(T). Then a(u) = e ?™%. Then « is an automorphism of C(T). The
automorphism « induces an action of the cyclic group Z on C(T). Consider the crossed
product C(T) x Z. By the definition of the crossed product, C'(T) x Z is the universal
C*-algebra generated by a copy of C'(T) and a unitary v such that

vfv" = a(f)

2mi0757 is satisfied

for f € C(T). However, C'(T) is generated by u and the equation uv = e
in C(T) xZ. Consequently, there exists a surjective x-homomorphism ¢ : Ay — C(T) xZ
such that ¢(u) = u and ¢(v) = .

Note that C(T) is the universal C*-algebra generated by the unitary @. Consequently,
there exists a homomorphism 7 : C(T) — Ay such that 7(u) = u. The relation uv =
e?%yu implies that the pair (7, v) is a covariant representation of (C(T),Z, ). Denote
the homomorphism 7 x v from C(T) x Z — Ay by 9. It is clear that i(u) = u and
(V) = v. Hence ¢ and ¢ are inverses of each other. This proves that Ay is isomorphic
to C(T) x Z.

The main theorem of this section is that if # is irrational then Ay is simple, i.e. it
has no non-trivial closed two sided ideals. The proof makes use of a very useful notion

called conditional expectation.

Definition 9.2 Let A be a C*-algebra and B C A be a C*-subalgebra. A linear map
E : A — B is called a conditional expectation of A onto B if

74



(1) forb e B, E(b) =,
(2) forby,by € B and a € A, E(bjaby) = by E(a)be, and
(3) fora € A, E(a*a) > 0.
The conditional expectation E is said to be faithful if whenever E(a*a) =0, a = 0.

Lemma 9.3 Let E : A — B be a conditional expectation. Then E is contractive, i.e.
fora e A, |[E(a)]] < |al|.

Proof. Consider the Hilbert B-module B. Represent B as adjointable operators on B
by left multiplication. That is, for b € B, let L, : B — B be defined by Ly(c) = bec.
Then L, is adjointable for every b € B. Moreover, B 3 b — L, € Lg(B) is an injective
s-homomorphism. Hence for b € B, ||b|| = ||Ls||. Suppose a € A is a positive element.
Calculate, using Exercise [7.4] as follows to observe that

IE@)] = |[Lp@ll
= sup{[|(b|E(a) B)|| : b € B, [[b]| = 1}
= sup{[[b"E(a)b]| - b € B, ||b]| = 1}
= sup{[|E(b"ab)[| - b € B, ||b]| = 1}
< sup{[|E(b"[[al[b)[| - b € B, [[b]] = 1}
< lall

For ay,as € A, let (ai|az) = E(ajag). Then ( | ) is a B-valued semi-definite inner

product. Hence by Cauchy-Schwarz inequality, we have for b € B and a € A,
10"E(a)|| = [[E®"a)|[ < [[ED)|[2[|[E(a”a)ll> < [[b]|]]a]].

Let (ey) be an approximate identity of B. The above equation implies that ||eyE(a)|| <
lla||. But exE(a) — E(a) in B. Consequently, ||E(a)|| < ||a|| for every a € A. This
completes the proof. O

Remark 9.4 A theorem due to Tomiyama asserts that if E : A — B is a contractive
linear map such that E(b) = b for every b € B then E is a conditional expectation of A
onto B.
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Here is an example of a conditional expectation. Suppose A is a a C*-algebra and
a := {as} is an action of a compact group G on A. We choose the Haar measure on G
so that the G has measure 1. The fixed point algebra of «, denoted A®, is defined by

A% :={a € A: as(a) = a¥s € G}.

Note that A% is a C*-subalgebra of A. Define £ : A — A by

E(a) = /as(a)ds.

Exercise 9.1 Verify that E is a faithful conditional expectation of A onto A®.

Let (A, G,a) be a C*-dynamical system. Assume that G is discrete and abelian. Note
that G is a compact group. For the sake of simplicity, assume that A is unital. Recall
that the crossed product A x, G is the universal C*-algebra generated by a copy of
A and unitaries {us : s € G} such that usu; = ug and usau* = ag(a) for a € A.
This universal picture reveals that for xy € @, there exists a unique *x-homomorphism

By : Ax G — A x G such that

Byla) =a
BX(US) = X(S)u5~

Then g := {BX}XE@ is an action of G on the crossed product A x GG. The action [ is
called the dual action on the crossed product A x G. We claim that the fixed point
algebra of B is A. Set B = A x G. It is clear that A C B?. Let E : B — B’ be the

conditional expectation given by

ﬂm:/@@w

It suffices to show that E(b) € A for every b € B. Since A is closed in A x G and E
is continuous, it suffices to show that £(b) € A whenever b is the form b = ) __. asus. It
is clear that it suffices to show that E(aus) = 0 if s # e. Let s # e and a € A be given.
Note that

Blaw) = [ax(@usdx = ([ s,
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Since s # e, by Raikov’s theorem, there exists a character yo of G such that yo(s) # 1.

Calculate as follows to observe that

/X(s)dx = /(XOX)(S)dX (by the left invariance of the Haar measure)
~ [os(s)ax
—x0(s)( [ x(s)av).

Since xo(s) # 1, it follows that [ x(s)dx = 0. This proves that F(au,) = 0 if s # e.
Hence A = BP.

Remark 9.5 Ifb=)"__.asu, then E(b) = a..

Let us turn our attention back to Ay. For the rest of this section, assume that 6 is

irrational. Write Ap = C(T) x Z. Denote the generating unitary of C'(T) by u and the

2mi040,. Let

unitary corresponding to the generator 1 of the group Z by v. Then uv = e
E : Ay — C(T) be the conditional expectation constructed out of the dual action of

7 =T on Ag. Forn > 1, let E, : Ag — Ay be defined by

. 1 - k., xk
E.(z) = n—l—lkz_%u xu™”.

The crucial fact that we need to conclude the simplicity of Ay is the following.
Lemma 9.6 For x € Ay, E,(x) — E(x).

Proof. Tt suffices to check that for + = u'v® with r;s € Z, E,(r) — E(z). For the
sequence {E,},>1 is bounded. Let r,s € Z be given and let x = u"v®. It is clear that

if s =0, E,(r) = u" = E(z). It suffices to consider the case when s # 0 which we

2misf Since 6 is irrational, it follows that z # 1. Now a

simple calculation using the relation ufv® = 7503

E ( ) 1 (271: 27rik89) r. s 1 <1 B Zn+1> r. s
n ) = (& u v = u v.
n+1 — n+1 1—2z

henceforth assume. Set z = e

u® implies that

Thus, as n — oo, E,(z) — 0 = E(z). This completes the proof. O

Theorem 9.7 Let 6 be an irrational number. The C*-algebra Ag is simple.
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Proof. Let I C Ay be a closed 2-sided non-zero ideal of Ay. Denote E(I) be J. A
consequence of the previous lemma is that J C I. Note that J = I N C(T). Since
E is faithful, it follows that J is non-zero. Moreover the fact that F is a conditional
expectation implies that J is a two sided ideal of C(T).

For x € J, of(z) = v*zv** € I. Clearly o*(z) € C(T). Thus J is an a-invariant
ideal of C(T). In other words, a(J) = J. Let F' C T be a closed subset such that

J={f €C(T): f vanishes on F'}.

The fact that a(J) = J implies that > F = F for every k € Z. It is well known that
for every xg, {e**%zy : k € Z} is dense in T. We claim that F is empty. Suppose not.
Since F is closed and e*™* [ = F, we have F' = T. This however forces J = 0 which is a
contradiction. Hence F' = (). Consequently, J = C(T) C I. But then the ideal generated

by C(T) is Ap. Hence I = Ay. This completes the proof. O

78



10 Mackey’s imprimitivity theorem : the discrete

case

This section is devoted to a discussion on Mackey’s imprimitivity theorem cast in Rieffel’s
language of Hilbert C*-modules. We only give a proof in the discrete setting and refer
the reader to the monographs [11] and [17] for the topological case. In Rieffel’s language,
Mackey’s imprimitivity theorem reads as follows.

Theorem 10.1 Let G be a second countable locally compact topological group and H
be a closed subgroup of G. The crossed product Co(G/H) x G is Morita equivalent to
C*(H).

First we proceed towards defining the notion of strong Morita equivalence due to

Rieffel.

Definition 10.2 Let A and B be C*-algebras. An A-B imprimitivity bimodule is a
vector space E which has a left A-action and a right B-action together with A-valued

and B-valued inner products satisfying the following

(1) the A-valued inner product is linear in the first variable and conjugate linear in the

second variable,

(2) the B-valued inner product is linear in the second variable and conjugate linear in
the first variable,

(3) forxz,y € E and a € A, (azxly)p = (z]a*y) B,

(4) forz,y € E and b € B, (xbly)a = (x|yb*) 4,

(5) Jor,y,z € E, {zly)az = (y|2)p,

(6) the linear span of {{z|y)a : ,y € E} is dense in A,

(7) the linear span of {(z|y)p : x,y € E} is dense in B, and

(8) E is complete with respect to the norm induced by both the A-valued and the B-

valued inner products.

Let F be an A-B imprimitivity bimodule. For x € E, define

[lz]]a s = [[{z]2) A

T
|z]|5 : = [|(z]) 5

N N[

79



Proposition 10.3 With the foregoing notation, we have ||z||4 = ||x||p for every x € E.

Proof. View E as a Hilbert B-module. For a € A, let L, : E — E be defined by
L,(z) = a.x. Then for every a € A, L, is adjointable and the map A > a — L, € Lp(F)
is a *-homomorphism. We claim that a — L, is injective. Suppose L, = 0. Then
(azx|ly)a = 0 for every z,y € E. Consequently a(z|y)4 = 0. But {(z|y)a : z,y € E} is
dense in A. Hence ab = 0 for every b € A. This shows that a = 0. This proves our claim.

Let x € E be given. Define 0,, : E — E by 0,.(y) = z(z|y)s. Note that 0, , =
L4y~ Thus to complete the proof, it suffices to show that for x € E,

102011 = Il2]l5-
It follows from Cauchy-Schwarz inequality that ||0,.|| < ||z||%. Set y := T and
calculate as follows to observe that
1022 ()I1* = [z (zly) o (ly))]]
1
= HxHQH(ﬂ@(ﬂ@(ﬂ@“
1 6
= HxHQH?CH
= |||
Hence ||z||% < ||0..|]. Consequently, ||6,..|| = ||z||%. This completes the proof. O

Definition 10.4 Let A and B be C*-algebras. We say that A and B are Morita equiv-

alent if there exists an A-B imprimitivity bimodule.

Example 10.5 Let A be a C*-algebra. Set E .= A and B := A. Then E is a Hilbert
B-module. The C*-algebra A acts on E by left multiplication. Define an A-valued (left)

inner product on E by
(z|z)a = 2y,
Then E is an A-A imprimitivity bimodule.
Example 10.6 Let A be a C*-algebra and p € A be a projection. Suppose the ideal

generated by p is A. Let B := pAp. Set E := pA. Define a B-valued inner product on
E by

(z]y) = zy".

Then E is a B-A imprimitivity bimodule.
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The algebra of compact operators of a Hilbert module: Let E be a Hilbert
B-module. For z,y € F, let 0,, : ' — FE be defined by

00y (2) = 2(yl2).

Note that for z,y € E, 0., is an adjointable operator and 6; = 0, ,. Moreover for
T e Lp(E), T0,, = 01y, and 0,,T = 0, 7+,. The C*-algebra of compact operators on
E, denoted Kp(E), is defined to be the closed linear span of {6, , : z,y € E}.

Remark 10.7 Let A be a C*-algebra and consider the Hilbert A-module E := A. For
a€ A, letL,: E— E be defined by L,(z) = ax. Note that for x,y € E, 0,, = Lyy~.
This implies that A > a — L, € Kg(E) is an isomorphism.

Suppose A is unital. Then Ly is the identity operator which is not compact in the
sense of Banach space theory unless the algebra A is finite dimensional. Thus compact
operators in the sense of Hilbert C*-modules need not be compact in the usual Banach

space theory sense.

Exercise 10.1 Let E := A" be n copies of A. Show that M,(A) is isomorphic to
Ka(A™).

Let E be a Hilbert B-module and set A := Kg(E). The C*-algebra A acts on E on
the left by the formula: T.x = Tz for T' € Kg(F) and z € E. Define an A-valued inner
product on E by

(93|y>,4 = ea;,y-

The proof of Proposition imply that for z € E, ||0, .|| = [|z||*. Tt is routine to verify
that E satisfies all the axioms, except (7), of Definition [10.2] Note that for a Hilbert
B-module E, the linear span of {(z|y) : x,y € E} is always a two sided ideal.

Definition 10.8 Suppose E is a Hilbert B-module. The Hilbert module E is said to be
full if the closed linear span of {{x|y) : x,y € E} is B.

Proposition 10.9 Let A and B be C*-algebras. The following are equivalent.
(1) The C*-algebras A and B are Morita equivalent.

(2) There exists a full Hilbert B-module and a faithful representation ¢ : A — Lp(F)
such that p(A) = Kp(E).
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Proof. Suppose (1) holds. Let E be an A-B imprimitivity bimodule. For a € A, let
¢(a) : E — E be defined by ¢(a)(z) = az. In the proof of Prop. [10.3] we observed that
A>3 a— ¢(a) € Lp(E) is injective. Note that for x,y € E, ¢((x|y)a) = 0,,. Since
{{z|y)a : z,y € E} is dense in A, it follows that the image of ¢ is Kg(E). Axiom (7)
implies that F is a full Hilbert B-module.

We have already observed that if F is a full Hilbert B-module then E is a Kg(E)-B
imprimitivity bimodule. Thus (2) = (1) is clear. O

Next we show that Morita equivalence is indeed an equivalence relation on C*-

algebras.
Proposition 10.10 Morita equivalence is an equivalence relation.

Proof. We have already observed that A is an A-A imprimitivity bimodule. Suppose E
is an A-B imprimitivity bimodule. Denote the conjugate vector space by E. Then as a
set E is just E. For an element x € E, when we regard x as an element of E, we write

j(x) for . The addition and scalar multiplication are defined by

Then E is a B-A imprimitivity bimodule where the right action of A, the left action of

B and the inner products are given by

j(x).a = j(a"z)
b.j(z) = j(xb")
(J@)]i(y)a = (z|y)a
G@)iy)s = (zly)s

for x,y € F and a € A, b € B. Suppose FE is an A-B imprimitivity bimodule and F
is a B-C imprimitivity bimodule then the interior tensor product F ®p F' is an A-C

imprimitivity bimodule. O

Remark 10.11 Let E be a A-B imprimitivity bimodule and E be a conjugate B-A

imprimativity bimodule constructed in the previous proposition. Then the maps
ExRpE22®j(y) — (zly)a € A

and
E®sE > j(x)@y— (zly)p € B

82



are isomorphisms of Hilbert modules. Thus E QpE =2 A and E®QaE > B. Thus Morita
equivalent C*-algebras have the same representation theory (See Remark .

In practice, imprimitivity bimodules are always constructed by the process of com-
pletion. The setup we usually have is as follows. Let Ay be a dense C*-subalgebra of A
and By be a dense C*-subalgebra of B where A and B are C*-algebras.

Definition 10.12 A pre Ag-By imprimitivity bimodule is a vector space Ey which is a
Ag-By bimodule with an Ag-valued and a Bg-valued semi-definite inner products such
that

(1) the Ag-valued inner product is linear in the first variable and conjugate linear in

the second variable,

(2) the By-valued inner product is linear in the second variable and conjugate linear in
the first variable,

(3) fO?” x,y € EO CLTLd a < ACU <ax|y>Bo = <m|a*y>30,
(4) for x,y € Ey and b € By, (xbly)a, = (z|yb*) a,,

(5) fOT T,Y,%2 € EO7 <$‘y>AOZ - x<y|Z>BO7

(6) for x € Ey, a € Ay and b € By, {(ax|az)p, < ||a||*(z|z)p, and (xb|zb)s, <
|1b]*(x|x) 4o, and

(7) the set {{x|y)a, : x,y € Eo} and the {{z|y)p, : ©,y € Ey} span dense ideals in A
and B respectively.

Proposition 10.13 Let Ey be a Ag-By imprimitivity bimodule. For x € E,
[[(@]x) 40| = [[{x]) 5o |
Proof. Let x € Ey be given. Let a = (x|z)4,. Calculate as follows to observe that

[lall*(zlz) 5,

azx|ax)p,

AVARN AV

>

({z]2) ag2|(x]) 20) Bo
(@ (@]7) o |2 (2|2) By) Bo
(]

zlz) g,

Taking norms and cancelling ||(z|z) g, ||, we get ||{z|z)4, > |[{z|2)B,||. A similar argu-

v

ment yields ||(z|x) g, || > ||(z|x)a,||. This completes the proof. O
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Remark 10.14 Suppose Eq is a pre Ag-By imprimitivity bimodule, first we mod out the
null vectors and then complete to obtain a genuwine A-B imprimitivity bimodule. The
previous proposition implies that the null vectors of Ey are the same whether we give the

norm induced by the Ag-valued inner product or the By-valued inner product.

We proceed towards proving Theorem in the discrete setting. For the rest of this
section, assume that G is a discrete countable group and H C G be a subgroup. Denote
the set of left cosets of H by G/H. The group G acts on GG/H by left translations. Let
a := {as}seq be the action of G on Cy(G/H) induced by the left translation of G on
G/H.

Let us fix notation which will be used throughout. Let A := Co(G/H) x G and
B := C*(H). Denote the generating unitaries of B by {v; : t € H}. For a € Co(G/H)
and s € G, let a®ds € C.(G,Cy(G/H)) be the function whose value at s is a and vanishes
elsewhere. For s € G, let egy € C.(G/H) be the characteristic function at sH. Note
that a,(e;g) = esm for s,t € G. Let Ag be the linear span of {e;g ® d; : s € G,t € G}
and By be the linear span of {v; : t € H}. Then Ay and By are dense *-subalgebras of
A and B respectively. Also note that {v; : t € H} and {e,g ® 5 : ;s € G} form a basis
for By and Ag respectively.

Let Ey := C.(G) and let {¢; : s € G} be the standard basis for Ey. Define a left A,

action and a right By action on Ej by

(erpr @ d5).€6¢ - = L (st)eg

€. Vg = €g.

Define an Ap-valued sesquilinear form (by extending linearly in the first variable) and a

By-valued sesquilinear form (by extending linearly in the second variable) by

(esle) B, = 1 (s t)ve1y
<€s|€t>A0 =esg ® 631&*1'
Theorem [10.1} in the discrete case, follows from the next theorem.
Theorem 10.15 With the foregoing notation, Eqy is a pre Ag-By imprimitivity bimodule.

Proof. First we show that the sesquilinear forms defined are indeed positive semi-definite.
Let us first deal with the By-valued sesquilinear form. Let z := ZSeG as€s € Ey be given.
Let F :={s € G : a5 # 0}. Then F is a finite subset of G. Define an equivalence relation
on F by for s1,89 € F, s1 ~ sy if and only if s;H = soH. For s € F, let [s| be the
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equivalence class containing s. List the equivalence classes as [s1], [sa], -, [sm]. Write
[si] = {sihij : j=1,2,--- k;} for every i =1,2,--- ,m

Calculate as follows to observe that

x|l‘ : :<§ :a’slhzra/slhzsvh 1hls>

Xm: ((Z s, h;; vhij)*(z:: Us;hy; Um,-))

i=1 = j=1

v

0.

This shows that the By-valued sesquilinear form is a semidefinite inner product.

Let © := Y  _,as¢s € Ey be given. Fix a non-degenerate representation of the
crossed product Co(G/H) x G. In other words, fix a covariant representation (m,U) of
the C*-dynamical system (Co(G/H), G, a). Calculate as follows to observe that

(m % U)({(z|z)4,) Z asam(esy )Ug—1
s,teG
= Z asa;Ust(e)U; (since Ugm(ey)Ur = m(esy))
s,teG
ZCLSUT(' en) ZaSUW €H
seG seG
> 0.

Since (m x U)((x|z)a,) > 0 for every covariant representation (w,U), it follows that
(x|x) 4, > 0 in A. The verifications of the axioms, except Axiom (6), of Defn. are
routine and we leave the verification to the reader.

View Ej as a pre Hilbert By-module. Mod out the null vectors and complete to
obtain a Hilbert B-module E. For s € G and z := Y, ai€, let Us(x) = Y, €.
Note that for x,y € Ej,

(Usz|Usx) g, = (x|2) B,
<st|y>Bo = <5B|Us*1y>30

Thus there exists a unique adjointable operator on E, which again denote by Uj, such
that Usﬁt = €gt-
For © = 3, o ae € Ey, define Px =3, - 1g(t)ae. It is clear that P*x = Pz and
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(Px|y) = (z|Py) for x,y € Ey. For x € Ey, calculate as follows to observe that

(z|lz) g, = (1 = P)x + Pz[(1 — P)x + )5,
= ((1 = P)z|(1 = P)x)p, + (Pz|Pz)p,
> (Px|Pz)p,.

The above inequality implies that there exists a unique adjointable operator, again de-
noted P, such that Pe; = 1y (t)e;. For s € G, set Pyg = UsPUY. Note that Py is a

projection. Then
PsH<€t) = ]-sH(t)Et-

Hence it follows that P,y Py = 1g5(s~'t). Making use of Proposition , we conclude
that there exists a unique *-homomorphism 7 : Co(G/H) — Lp(F) such that 7(esy) =
P,g. It is routine to verify that (m,U) is a covariant representation of the dynamical
system (Co(G/H),G,a). Also for a € Ay and x € Ey, a.x = (7 x U)(a)z. Calculate as
follows to observe that for a € Ay and = € Ej,

(azxfazx) g, = ((x > U)(a)z|(x x U)(a)z) 5
< llal*(z|z)5

< [lal[*(z|2) 5,-

The verification of the second half of Axiom (6) is similar and therefore relegated to an

exercise. O

Exercise 10.2 Verify the second half of Aziom (6) and complete the proof of the previous

Theorem.

Remark 10.16 For examples and applications of Mackey’s imprimitivity theorem, we

recommend Tyrone Crisp’s notes available online at www.math.ru.nl/ terisp.
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11 K, of a C*-algebra

In the next six sections, we give a basic introduction to the subject of K-theory. We will
not give complete proofs of many results and merely give a sketch. The reader interested
in a detailed development should consult [3], [I3] or [16].

Let A be a unital algebra over C. Denote the set of isomorphism classes of finitely
generated projective right A-modules E| by V(A). Then V(A) is an abelian semigroup
with identity. First we obtain a better description of V(A) in terms of idempotents. Let
M be a right A-module. Recall that M is said to be finitely generated and projective if
there exists a right A-module N such that M & N is isomorphic to A™ for some n > 1.

We always think of elements of A™ as column vectors.

Exercise 11.1 Let m,n > 1 be given. For x € M,xn(A), let T, : A" — A™ be defined
by T,.(v) = zv. Show that the map

Mypin(A) > 2 — T, € La(A", A™)

is an isomorphism. Here Lo(A™, A™) denotes the abelian group of A-linear maps from
A" to A™.

Proposition 11.1 We have the following.

(1) For an idempotent e € M,(A), eA™ is a finitely generated projective A-module.

(2) Let M be a finitely generated projective A-module. Then there exists a natural
number n and an idempotent e € M, (A) such that M is isomorphic to e A™.

(3) Let e € M,,,(A) and f € M,(A) be such that e and f are idempotents. Then eA™
and fA™ are isomorphic as A-modules if and only if there exist © € M, «n(A) and
Yy € Mywm(A) such that xy = e and yx = f.

Proof. Let e € M,(A) be an idempotent. Clearly, eA" & (1 — e)A™ = A". Therefore
eA" is a finitely generated projective A-module. This proves (1). Let M be a finitely
generated projective A-module. Choose an A-module N such that M & N = A" for
some n. Let T : A" — A™ be the map defined by T'(m @ n) = m. Then T is clearly an
idempotent. Hence there exists e € M,,(A) such that e is an idempotent and 7" is given
by left multiplication by e. Note that M = eA™. This proves (2).

5We only consider right A-modules.
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Let e € M,,(A) and f € M, (A) be such that e and f are idempotents. Suppose that
eA™ and fA™ are isomorphic. Let T': fA"™ — eA™ be an isomorphism and let S be the
inverse of 7. Decompose A" as A" = fA"@®(1— f)A™ and A™ as A™ = eA"H(1—e)A™.
Let X : A" — A™ be defined by X(u,v) = (Tu,0) and Y : A™ — A" be defined by
Y (u,v) = (Su,0). Then XY is given by left multiplication by e and Y X is given by
left multiplication by f. Let x € M,,x,(A) be the matrix corresponding to X and
Yy € M, «m(A) be the matrix corresponding to Y. Then xy = e and yx = f. This proves
the “only if” part.

Suppose there exists * € M,«n(A) and y € M« (A) such that xy = e and yz = f.
Replacing = by exf and y by fye, we can assume that exf = x and fye = y. Let
X A" - A" and Y : A™ — A™ be the A-linear maps that correspond to z and y
respectively. Then X maps fA" into eA™ and Y maps eA™ into fA™. Clearly, when
restricted to fA™ and eA™, X and Y are inverses of each other. This proves the “if
part”. This completes the proof. O

In view of Prop. [I1.1} the semigroup V(A) can be described as follows. For n > 1,
let E,(A) be the set of idempotents in M, (A). Set

MOO(A) = U Mn(A)
Eu(A): = ) En(A)

Define an equivalence relation on E(A) as follows: For e € E,,(A) and f € E,(A),
we say e ~ f if there exist © € M,,xn(A) and y € M, xn(A) such that xy = e and
yr = f. Then V(A) = E(A)/ ~. Moreover the addition operation is as follows. For

67f € EOO(A)7
e 0
ed f= [O f]'

In a C*-algebra, we can replace idempotents by projections and the equivalence re-
lation then becomes Murray-von Neumann equivalence. Let A be a unital C*-algebra.
For n > 1, let P,(A) be the set of projections in M,(A). Set

Poo(A) := | Pu(A).

Let p € P,,(A) and ¢ € P,(A) be given. We say that p and ¢ are Murray-von Neumann

equivalent if there exists a partial isometry u € M,,x.,(A) such that u*u = p and uu* = q.
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Exercise 11.2 Letp € P,,(A) be given. Show that p is Murray-von Neumann equivalent
0
to b .
0 0,
Proposition 11.2 Let A be a unital C*-algebra.

(1) Let e € E(A) be given. Then there exists p € Py (A) such that e ~ p.

(2) Let p,q € Py(A) be given. Then p ~ q if and only if p and q are Murray-von

Neumann equivalent.

Proof. Let e € E,(A) be given. Without loss of generality, we can assume that n = 1.
Represent A faithfully as bounded operators on a Hilbert space H in a unital fashion.
Let p be the orthogonal projection onto Ran(e) = Ker(1 —e). Decompose H as H :=
Ran(p) @ Ker(p). With respect to this decomposition, e has the following matrix form

e;:[j) fg].

Set z := 1+ (e —e*)(e* —e). Then z is invertible in A. A simple matrix calculation

(1+ zx*)™! 0 |t o
0 (1+z*z)"'| |0 O

Hence p = ee*z~!. This implies in particular that p € A. Let = e and y = p. Again a

implies that

1+xx* 0
0 0

eefz 7 =

direct matrix calculation implies that zy = p and yx = e. Hence e ~ p and the proof of
(1) is complete.

Let p,q € Py (A) be given. Suppose p ~ ¢. By adding zeros along the diagonal, we
can assume that p and ¢ are of the same size. Again without loss of generality, we can
assume p,q € A. Let z,y € A be such that xy = p and yr = ¢. Replacing = by pxq
and y by qyp, if necessary, we can assume that prq = x and qyp = y. Consequently
y:pH — qH and x : ¢H — pH are inverses of each other. Also y* maps ¢H to pH
and x* maps pH to qH. Hence y*y : pH — pH is invertible. Moreover y*y € pAp.
Hence there exists r € pAp such that (y*y)%r = T(y*y)% = p. Set u := yr. Note that
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Yy = u(y*y)%. Clearly, u*u = p and uu* < q. Calculate as follows to observe that

q=qq"
= (yr)(z"y)
< |z|Pyy*

*

NG NG|
= ||2|Pu(y*y)2 (v*y)2y

< [yl

Therefore ¢ < uu*. Consequently, uu* = ¢q. Hence p and ¢ are Murray-von Neumann
equivalent. This completes the proof. 0.

Grothendieck construction: The Grothendieck construction allows us to construct
an abelian group out of the semigroup V(A). Let (R, +) be an abelian semigroup with
identity 0. Define an equivalence on R x R as follows: for (a,b),(c,d) € R x R, we
say (a,b) ~ (c,d) if there exists e € R such that a +d+ e = b+ ¢+ e. Then ~ is an
equivalence relation on R x R. Denote the set of equivalence classes by G(R). Then

G(R) becomes an abelian group with the addition defined as
[(a,0)] + (¢, d)] = [(a+ ¢, b+ d)].

For any a € R, [(a, a)] represents the identity element and the inverse of [(a, b)] is [(b, a)].
For a € R, let [a] := [(a,0)]. With this notation,

G(R) = {[a] — [b] : a,b € R}.

Note that [a| = [b] if and only if a + ¢ = b + ¢ for some ¢ € R.
Let A be a unital algebra over C. The Grothendieck group G(V(A)) is denoted
Kyo(A). Note that

Koo(A) ={[p] — la] : p,q € Ex(A)}.

0 0
Also [p] = [q] if and only if there exists r € E(A) such that [I(; ] ~ g ] :
r r
Let ¢ : A — B be a unital homomorphism. For n > 1, let ¢ : M, (A) — M, (B) be
the amplification of ¢, i.e.

o™ ((aiy)) = (d(ayy)).
To save notation, we denote ¢™ again by ¢. A moment’s reflection with definitions

reveal that there exists a unique homomorphism denoted Kyo(¢) : Koo(A) — Koo(B)
such that

Koo(0)([p] = la]) = [¢(p)] = [6(a)].
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In short, K is a covariant functor from the category of unital algebras to the category
of abelian groups.

Remark 11.3 Let A be a unital C*-algebra.

(1) Let p,q € A be projections such that pg = 0. Then [p+ q] = [p] + [q]. For if we set

0
u:= (p,q) then u*u = g and vu* =p+q.
q

(2) Let p,q € P,(A) be given. Then [p] = [q] in Ko(A) if and only if there exists

m > 1 such that p

158 Murray-von Neumann equivalent to [q

m m

The “if part” is clear. For the "only if” part, suppose [p] = [q] in Koo(A). Then
there exists v € Py, (A) such that p@®r ~ q@®r. Note that

p®Ll,~pd(r+1—r)
~po(ra(l—r))
~(gor)®(l—r)
~q@(r+1-r)
~qP1,.

Exercise 11.3 (1) Show that Koo(C) is isomorphic to Z and [1] forms a Z-basis for
Koo(C).

(2) Let n > 1. Show that Ko (M,(C)) =Z. Let p be a minimal projection in M, (C).
Show that [p| is a Z-basis for Ko (M,(C)).

(3) LetH be an infinite dimensional separable Hilbert space. Show that Koo(B(H)) = 0.

Exercise 11.4 Let A; and Ay be unital algebras and set A :== Ay & As. Show that the
map Koo(m) @& Koo(mz) : Koo(A) = Koo(A1) ® Koo(Az) is an isomorphism.

Next we define K, for a C*-algebra. Let A be a C*-algebra (unital or non-unital).
Set AT := {(a,\) : a € A, X € C}. The addition and scalar multiplication on A* are

defined co-ordinate wise. The multiplication rule is given by

(a, N)(b, 1) = (ab+ Ab+ pa, A\w).
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Let € : AT — C be the map defined by e(a,\) = \. Let s : At — AT be defined by
s(a, A) = (0,\). The map s is called the “scalar map” as it remembers only the scalar
part. We denote the amplifications of € and s by € and s itself.
Define
Ko(A) := Ker(Kop(e) : Kgo(AT) = Koo(C) = Z).

Proposition 11.4 (The standard picture) Let A be a C*-algebra. Then
Ko(A) = {[p] — [s(p)] : p € P(AT)}.

Proof. Tt is clear that for p € Py(A"), [p] — [s(p)] € Ko(A). Let z € Ky(A) be
given. Write = [p| — [q] with p, ¢ projections of same size say of size n. The fact
that x € Ky(e) implies that €(p) and €(q) are of same rank. Choose a scalar unitary u
such that €(p) = ue(q)u*. Replacing ¢ by uqu*, we can assume that x = [p| — [¢] with
0 0 0
e(p) = €(q). Set e := b | and f = 0 1]. Then = = [e] — [f]. Also note that
—q
[s(e)] = [s(p)] + [1n — s(¢)] = [1.] = [f]. Therefore z = [e] — [s(e)]. This completes the
proof. O

Proposition 11.5 Let A be a unital C*-algebra. Then Ky(A) is isomorphic to Koo(A).

Proof. Note that the map AT > (a,\) = (a + A4, \) € A@® C is an isomorphism.
With respect to this isomorphism, the map € becomes the second projection. The result
follows immediately from the previous exercise. 0.

Ky as a functor: Let ¢ : A — B be a *-algebra homomorphism. The map ¢ induces
amap ¢ : AT — B* which is defined as

¢"((a,A)) = (¢(a), A).

Note that e o ¢ = e4. Hence Ky(eg) o Koo(¢ph) = Koo(ea). Therefore Koo(¢) maps
Ko(A) to Ko(B). We denote the restriction of Koy(¢") to Ko(A) by Ko(¢). Thus K,
is a functor from the category of C*-algebras to the category of abelian groups. The
functor Ky is stable, homotopy invariant, half-exact and split-exact. We explain this in
what follows.

Stability: Let A be a C*-algebra and p be a minimal projection of M, (C). Let
w:A— M,(A) = A® M,(C) be defined by

w(a) :=a®p.
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Then Ky(w) : Ko(A) — Ko(M,(A)) is an isomorphism. The reason is a matrix with
entries being matrices over A is again a matrix with entries in A. We omit the proof and
refer the reader to [13].

Homotopy invariance: Let A and B be C*-algebras and ¢, : A — B be *-
homomorphisms. We say that ¢ and ¢ are homotopy equivalent if there exists a family
of *-homomorphisms ¢, : A — B for t € [0, 1] such that

(1) for a € A, the map [0,1] 2t — ¢,(a) € B is norm continuous, and

(2) ¢o = ¢ and ¢, = .

The homotopy invariance of K, implies that if ¢ and v are two homotopy equivalent
s-homomorphisms then Ky(¢) = Ko(1). A moment’s thought reveals that this amounts

to proving the next lemma.

Lemma 11.6 Lete, f € A be such that e and f are projections. Suppose that ||e — f|| <

1. Then e and f are Murray-von Neumann equivalent.

Proof. Let « := ef. Note that ||z*z — f|| = ||f(e — f)f|| < 1. Hence x*z is invertible in
fAf. Choose r € fAf such that r(:t*x)% = (a:*:v)%r = f. Set u := xr. Then u*u = f.
Since eu = u, it follows that uu* < e. Represent A faithfully on a Hilbert space, say
‘H. Suppose that uu* is a proper subprojection of e. Then there exists £ € H such that
e£ =& # 0 but u*¢ = 0. Hence ra*¢ = 0. Note that 2*¢ € Ran(f) and r is 1-1 on the

range space of f. Hence 2*¢ = 0, i.e. fe& = 0. Calculate as follows to observe that

1€]] = lle*¢ — fe€]
= [l(e = f)e]]
< [le€]| = 1I¢]]
which is a contradiction. Hence uu* = e. This completes the proof. a

Two C*-algebras A and B are said to be homotopy equivalent if there exists -
homomorphisms ¢ : A — B and v : B — A such that ¢ o ¢ and 1 o ¢ are homotopy
equivalent to the identity homomorphisms. As an example, consider A := C[0, 1] and
B :=C. Define e : A — B by e(f) = f(0) and 0 : B — A by o(\) = A. Then, clearly

€ o 0 is identity and o o € is homotopy equivalent to the identity.

Exercise 11.5 Suppose A and B are homotopy equivalent. Show that Ky(A) and Ko(B)
are isomorphic. Conclude that Ko(C(X)) = 7Z for a compact contractible space X .
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The next important property of K, is that it is half-exact and sends split exact

sequences to split exact sequences.

Proposition 11.7 Let 0 — [ — A s B — 0 be a short exact sequence of C*-

algebras. Then the sequence
15 exact in the middle.

Proof. Let x := [p] — [s(p)] € Ko(I) be given. Since 77 (p) = 7 (s(p)), it follows that
r € Ker(Ky(m)). Let x € Ker(Ky(r)) be given. Write = := [p] — [s(p)] with p a

0
projection in M,(A"). Replacing p by g . for large m, we can assume that 7+ (p)

m

and s(m"(p)) are Murray-von Neumann equivalent.
Let v be a partial isometry in M, (B™) be such that v*v = 7+ (p) and vv* = s(7t(p)).

T (p) 0 s(m™(p)) 0

v
. Thus, by replacin
0 0 0 Yy Tep g

Let U = . Note that U U* =

,U*

0
p by Z(; 0| We can assume that 77 (p) And s(7*(p)) are unitarily equivalent. Let

a € M,(A") be a contraction such that 7t (a) = U. Set

Vo a V1 —aa*
| —V1I—aa a*
. : U o0
Then V is a unitary and 7+ (V) = 0 Ul

p

Note that 7 (V 0 V*) is a scalar matrix. This implies in particular that ¢ :=

p 0 5(p)
0 0
x =[q] — [s(q)] € Im(Ky(i)) where i : I — A denotes the inclusion. This completes the

74 V* lies in Mo, (IT)). Also the scalar part of ¢ is Consequently,

proof. O
Next we show that K is split exact. Let

0—I—A-"3B—0

be a short exact sequence of C*-algebras . We say that it is split exact if there exists a
k-homomorphism p : B — A such that 7 o = idg. The map p will then be called a
splitting.
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Proposition 11.8 Let 0 — I — A — B — 0 be a split exact sequence of C*-
algebras with the splitting given by p: B — A. Then the sequence

0 — Ko(I) — Ko(A) 29 Ky(B) — 0
is a split exact sequence of abelian groups with the splitting given by Ko(u).

Proof. Let i : I — A be the inclusion. We have already shown the exactness at Ky(A).
Since Ky(m) o Ko(u) = Id, it follows that Ky(m) is onto. The only thing that requires
proof is that Ky(4) is injective. To that effect, let x := [p] — [s(p)] € Ko(I) be such that
z € Ker(Ky(i)).

Arguing as in Prop. , we can assume that there exists a unitary u € M, (AT)
such that upu* = s(p). Set w := (u™ o 7t (u*))u. Note that 7+ (w) is a scalar. Hence
w € M,(IT). Calculate as follows to observe that

wpw” = (uF o) (u)upu* (u" o) (u)
(u" o) (u"s(p)u)

(u"om™)(p)

s(p) (since p € I).

This proves that p and s(p) are Murray-von Neumann equivalent in M, (I"). Hence

x = 0. This completes the proof. O

Exercise 11.6 Let Ay and Ay be C*-algebras and A := Ay @ Ay. Denote the projection
of A onto A; by m;. Show that the map Ky(m) ® Ko(ms) : Ko(A) — Ko(Ay) & Ko(Asz) is

an 1somorphism.
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12 K, of a C*-algebra

In this section, we define another functor, denoted K7, from the category of C*-algebras
to abelian groups. It shares the same functorial properties with K. This is not a
coincidence as we will see later that K can indeed be defined in terms of Ky. To define
K, we work with invertible elements or unitaries.

Let A be a unital Banach algebra. Denote the set of invertible elements of M, (A)
by GL,(A). Note that GL,(A) is a topological group. Denote the connected compo-
nent of 1, by GL2(A). Then GLY(A) is a normal subgroup of GL,(A). Consider the
quotient group GL,(A)/ GL,SO)(A). There is a natural map from GL,(A)/GLS(A) —

GLy41(A)/GLY,  (A) given by
z 0
T — .

The group K,(A) is defined as the inductive limit lim GL,,(A)/ GLY(A).
Exercise 12.1 Show that GL,(C) is connected. Conclude that K,(C) = 0.

0
and Lo
1 0 x

Use the previous exercise to show that for © € GL,(A), the elements

represent the same element in GL,,41(A)/GLY ., | (A).

Proposition 12.1 Let A be a unital Banach algebra.
(1) We have Ky(A) = {[z] : z € GL,(A),n > 1}.

(2) For x,y € GL,(A), [z] = [y] if and only if there exists m and a path of invertibles
y 0

m 0 m

in GLyim(A) connecting

(3) The group operation on K,(A) is given by [z] & [y] := [g 0] .
Y

(4) The group K(A) is abelian.

Proof. (1) and (2) are just rephrasing the definition of the inductive limit. Statements
(3) and (4) follows from Exercise [12.1] O
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Remark 12.2 Let A be a unital C*-algebra. Suppose a € A is invertible. Then u =
ala|™ is a unitary. Note that (ala|™")iep,) s a path of invertible elements connecting a
to u. Using this it is routine to see that in the definition of l?l(A), we could have taken
unitaries in place of invertible elements. We usually work with unitaries in the case of
C*-algebras.

We denote the set of unitaries in M,(A) by U,(A) and the connected component of
1, by U(A). For unitaries u,v € U,(A), we write u ~ v if u and v represent the same

element in U, (A) /U’ (A).

It is clear that A — I?l(A) is a functor from the category of unital C*-algebras to the

category of abelian groups.

Exercise 12.2 Let Ay and Ay be unital C*-algebras and A := Ay ® Ay. Denote the
projection of A onto A; by m;. Show that the map Ki(m) & Ky (m3) : Ki(A) = K1(A1) &

K1(As) is an isomorphism.

For any C*-algebra A, define K;(A) := [?1(14+). For unital C*-algebras, we have
At = A@® C. Since K{(C) = 0, it follows that K;(4) = K1(A). Also K, is a functor.
If : A — B is a x-homomorphism then there exists a unique group homomorphism

K(¢) : K1(A) — K;(B) such that

Ky(¢)([ul) = [¢" (u)].

Next we discuss the functorial properties of Kj.
Stability: Let A be a C*-algebra and p be a minimal projection in M, (C). Let
w:A—A® M,(C) = M,(A) be defined by

w(a) :=a® p.

Then K;(w) : K1(A) = K;1(M,(A)) is an isomorphism. As with Ky, we omit its proof
and refer the reader to [13].

Homotopy invariance: Let A and B be (C*-algebras. Suppose ¢ : A — B and
Y : A — B are x-homomorphisms that are homotopy equivalent. Then K;(¢) = K;(v).

This is obvious since homotopy invariance is built in the definition of Kj.

Lemma 12.3 Let A be a unital C*-algebra and u € A be a unitary. Then u € U°(A)

if and only if there exists ay,as, -+ ,a, € A such that a;’s are self-adjoint and u =

a1 ,ia ia
eftetdz ... etin,
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Proof. For a self-adjoint element a, (eita)te[o’l] is a path of unitaries connecting 1 to e'.
Thus the “if part” is clear. Suppose v ~ 1. Let (us)tcjo,1) be a path of unitaries such
that up = 1 and u; = u. By uniform continuity, there exists a partition 0 = t; < t; <
to < -+ <t, =1such that ||u;, —u,_,|| < 1. Set u; := uy,.

We claim wu; is of the required form. Since ||u; — 1|| < 1, it follows that —1 ¢ o(uy).
Define a := —ilog(uy). Then u; = €'®. This proves the claim. Note that ||ufus — 1|| =
[lug — ug|] < 1. Applying the above argument, we conclude that ujus is of the required
form. But uy = ujujus. This proves that us is the required form. Proceeding this way,

we see that u, = u is of the form required. This completes the proof. O

Proposition 12.4 Let 0 — [ — A s B — 0 be a short exact sequence of C*-

algebras. Then the sequence
Ko (1) — Ki(A) 29 k(B)
1s exact in the middle.

Proof. Let i : I — A be the inclusion. Let [u] € Ko(I) be given. Then 7t o™ (u) is a

scalar matrix. Consequently, [7+ o i*(u)] = [1]. Hence Im(K;(i)) C Ker(K;(n)). Let
0

u € U,(A") be such that [71(u)] = [1,]. Replacing u by 1(; ) for m sufficiently large,

m

we can assume that 77 (u) ~ 1,. Choose self-adjoint elements by, bs,--- b, € M,(B™")
such that
Tt (u) = etree .. g
Choose a; € M,,(AT) such that a; is self-adjoint and 77 (a;) = b;. Set v := e'1e 2 ... ¢l
Then 7 (uv*) = 1. This implies that there exists w € U,,(IT) such that uv* = it (w).
Since [v] = 1, it follows that [u] = [uv*] = K;(i)([w]). Hence Im(K:(i)) = Ker(K;(r)).
This completes the proof. O

T

Proposition 12.5 Let 0 — I — A — B — 0 be a split ezact sequence of C*-
algebras with the splitting given by p: B — A. Then the sequence

0 — K\ (1) — K. (A) % g, (B) — 0
is a split ezact sequence of abelian groups with the splitting given by Ki(u).

Proof. Let i : I — A be the inclusion. We have already shown the exactness at K;(A).
Since Ki(m) o K1(u) = Id, it follows that Kj(m) is onto. The only thing that requires

proof is that K7 (i) is injective.
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Let uw € U,(I") be such that K;(i)([u]) = [1,]. By “amplifying u”, if necessary, we

can assume that i*(u) ~ 1,. Let (w)icpo1) be a path of unitaries in M, (A") such that

wo = 1, and wy = i (u). Set vy := (u o A7) (w})w;. Then 77 (v;) = 1. Hence there
exists u; € U,(I") such that i*(u,) = wy. Note that (u)iejo,1) is a path of unitaries in
M, (I"") connecting 1,, to zu where x is a scalar matrix. Hence [u] = [1,]. Therefore,
K (@) is injective. This completes the proof. O

Exercise 12.3 Let Ay and Ay be C*-algebras and A := Ay @ Ay. Denote the projection
of A onto A; by m;. Show that the map Ki(m) ® Ki(m) : K1(A) — K1(Ay) & K1(Ay) is
an 1somorphism.
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13 Inductive limits and K-theory

An important property of K-theory that allows to compute the K-groups for a large
class of C*-algebras, called AF-algebras, is that it preserves direct limits. The purpose
of this section is to explain this. The data that we require to define the inductive limit
of C*-algebras is as follows.

Let (An)n>1 be a sequence of C*-algebras and ¢,, : A,, = A, 11 be a x-homomorphism.

The above data is usually given pictorially as follows:
Ay Ay 2 Ay —s

For m < n, let ¢y : Ay — A, be defined by ¢y, == P10 @200 ¢,,. For
m = n, set ¢,,,, = Id. Note that for / <m < n,

¢n,€ = gbn,m o ¢m,€~

Let B := {(a,n) : a € A,,n > 1}. Define an equivalence relation on B as follows.
For (a,m), (b,n) € B, we say (a,m) ~ (b,n) if there exists r, s such that m +r =s+n
and Gpyrm(a) = Pnisn(b). Denote the set of equivalence classes by As. The set Ay
has a x-algebra structure where addition, scalar multiplication, multiplication and the

*-structure are as follows.

[(a,m)] + (b, n)] = [(dminm(a) + minn(b), m +n)]
Al(a,m)] = [(Aa, m)]
[(a, m)][(b, )] = [(Pm+nm (@) Pminn(b), m + n)]
[(a,m)]" = [(a", m)]

On A, define a C*-seminorm as follows.

i m)ll += 1m0 |16 (@]

Mod out the null vectors and complete to get a genuine C*-algebra which we denote by
As. Also Ay is called the inductive limit of (A, ¢,).

Let i, : A, = A be defined by i,(a) := [(a,n)]. Note that i, o ¢y, = ip,. This
implies in particular that i, (A, ) is an increasing sequence of C*-algebras. Moreover, the

union (J,5; in(A,) is dense in A.

Proposition 13.1 (The universal property) Keep the foregoing notation. Suppose
B is a C*-algebra and there exists x-homomorphisms j, : A, — B such that j, o ¢y, m =

Jm- Then there exists a unique x-algebra homomorphism ¢ : Ay — B such that
¢(in(a)) = jn(a)
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fora € A,. Moreover Ay is characterised by this property.
Proof. Left to the reader.

Remark 13.2 Inductive limits of systems indexed by a general directed set can be de-

fined. We have chosen to work with sequences for simplicity.

Exercise 13.1 Discuss inductive limits in the category of abelian groups. Formulate

and prove a universal property in this context.
The main theorem about inductive limits and K-theory is the following.

Theorem 13.3 Let (A, ¢n) be a directed system of C*-algebras and let A, be the direct
limit. Then
Ki(Ax) = lim (K;i(A,), Ki(¢n))

n—0o0

fori=0,1.

The soul of the proof of the above theorem relies in the following two propositions. The

reader should convince herself that it is indeed so.

Proposition 13.4 Let A be a C*-algebra. Suppose A, is an increasing sequence of
C*-subalgebras of A such that \J,_, Ay is dense in A.

(1) Let e € A be a projection. Then there exists a projection f € A, for some m such
that e ~ f.

(2) Let e, f € Ay, be projections. Suppose e ~ f in A. Then there exists n large such
that e ~ f in Apin.

Lemma 13.5 Suppose A is a C*-algebra. Let U be a non-empty open subset of C. Then
E :={a € A: spec(a) C U} is an open subset of A.

Proof. Let C' be the complement of U and F' be the complement of E. We show that
F is closed. Let a, be a sequence in F' such that a, — a. Then there exists A\, € C
such that A\, € spec(a,). Since (||a,||) is bounded, it follows that A, is bounded. By
passing to a subsequence, we can assume that \, converges. Let A := lim, \,. Since C
is closed, A € C'. Suppose a — A is invertible. Since a, — A\, — a — A, it follows that
a, — A, is invertible for large n which is a contradiction. This forces that A € spec(a).

Hence a € F. This proves that F' is closed and hence the proof. O
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Proof of Prop. |15.4, Let B := (J,5, As. Suppose e € A is a projection. Since

1

B is dense, there exists a € B such that a = a*, ||a® —a|| < %, |la —¢]] <  and

spec(a) C U = (=1, 2)U(2,2). Choose m such that a € A,,. Let h: U — R be defined

41 1014
by
0 e ()
h(t) := (13.9)
1 ifte(3,2).
Set f := h(a). Clearly f is a projection in A,,. Note that |la — h(a)|| < 5. Hence

h
lle = fI| < |le —al| + |la — h(a)|] < 1. By Lemma [11.6] it follows that e and f are
Murray-von Neumann equivalent. This proves (1).

Let e, f € A,, be projections. Suppose that e ~ f in A. Let u € A be such that
u*u = e and uu* = f. Choose a sequence u, € B such that u, — u. Set v, := fu,e.
Then v}v, — e and v,v) — f. Note that v, € B. Thus, there exists v € B such that
[lv*v —el| <1, [Jvv* — f|| < 1 and fv = wve =v. Let n > m be such that v € A,.

Note that v*v is invertible in eA, e and vv* is invertible in fA, f. Let r € eA, e and
s € fA,f be such that r(v*v)2z = e and s(vv*)2 = f. Set w := vr. Then w*w = e.
We claim w = sv. To see this, note that v(v*v)% = (vv*)%v. Multiply by 7 on the
right to deduce that v = ve = (vv*)%vr. Multiply on the left by s to deduce that
sV = s(vv*)%vr = fvr = vr. This proves the claim.

Calculate as follows to observe that

This proves that e and f are Murray-von Neumann equivalent in A,. This completes
the proof. O

Proposition 13.6 Let A be a unital C*-algebra. Suppose A,, is an increasing sequence
of unital C*-subalgebras of A such that |J,_, A, is dense in A.

(1) Let uw € A be a unitary element. Then there exists a unitary v € A,, for some m

such that v ~ v.

(2) Let u,v € A, be unitaries. Suppose u ~ v in A. Then there exists n large such

that u ~ v in Ayin.
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Proof. Let B := |J,—; A,. Suppose u € A is a unitary element. Since B is dense,
there exists a € B such that ||u — a|| < 1. Choose m such that a € A,,. Note that
[|]1 — u*al|| < 1. Hence b := u*a is invertible. Moreover (—oo, 0] is disjoint from spec(b).
Choose a holomorphic branch, say ¢, of the logarithm defined on C\(—o0, 0]. Set ¢ := ¢(a)
where ¢ is defined using the holomorphic functional calculus. Then (€)1 is a path
of invertibles connecting 1 to b. This implies in particular that u ~ a. Let v := ala|™".
Then u ~ v and v is a unitary in A,,. This proves (1).

Let u,v be unitaries in A,,. Suppose w := (w;) is a path of unitaries in A such that

wy = w and w; = v. Set

A:=C([0,1],4)

A, =C([0,1], Ay).

We can view A, as a unital subalgebra of A. Note that U2, A, is dense in A. Think
of @ as an element in A. As in part (1), extract a path (a;)¢cp,] of invertibles in A,, for
some n with n > m such that ||w; —a;|| < 1 for every t € [0, 1]. Arguing as in (1) in A,
we see that uw = wg ~ a9 in A,, and v = w; ~ a; in A,,. But ag ~ a; in A,,. Therefore
u ~ v in A,. This completes the proof. O

Let A be a C*-algebra. We say that A is approximately finite dimensional, also called
an AF algebra, if there exists a sequence (A,,) of finite dimensional C*-subalgebras of
A such that |J~, A, is dense in A. Let 4, : A, — A,41 be the inclusion. Then
A :=1lim,_,(A,,i,). Note that if A is a finite dimensional algebra then A is isomorphic
to M,,(C) & M,,(C) & --- M,,(C). Consequently, Ko(A) = Z" and K;(A) = 0. Since
K; preserves inductive limits, in principle, it is possible to compute the K-groups of an
AF-algebra. In particular, K;(A) = 0 for any AF-algebra. The reader should do the

following K-group computation.

(1) Let H be an infinite dimensional separable Hilbert space. Denote the algebra of
compact operators by IC(#H). Then IC(H) is AF and Ky(IC(H)) = Z. Moreover, if
p is a minimal projection in IC(#H) then [p] is a Z-basis for Kq(K(H)).

A
(2) Set A, := Mo (C). Let ¢, : Ay — A,i1 be defined by ¢, (A) = 0 31 . The
inductive limit A, := lim,, oo (Ap, ¢,,) is called the CAR algebra. Then
1 m
Ko(Aw) = Z[3) = {Q—n meZneNUu {0}}.
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(3) Let X :={0,1}" be the Cantor set. Then C(X) is an AF-algebra. Its K-group is
given by Ky(C(X)) = @Z.

neN

Exercise 13.2 Prove the following stability result for K-theory. Let IC be the C*-algebra
of compact operators on an infinite dimensional separable Hilbert space. Suppose p is a
minimal projection in IC and A is a C*-algebra. Let w: A — K ® A be defined by

w(a) = p® a.
Prove that K;(w) is an isomorphism.

Remark 13.7 One of the first significant results in the subject is the classification of
AF-algebras in terms of its K-theory. This was due to Elliot. Elliot’s theorem asserts
roughly that two AF-algebras are isomorphic if and only their K -theoretic invariants are

the same. For a precise statement, we refer the reader to [7].
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14 Six term exact sequence

An important computational tool that enables us to calculate the K-groups explicitly
is the six term exact sequence. We omit the proof altogether and merely explain the
consequences. Let

0—I—A-"5B—0

be an exact sequence of C*-algebras. Then there exists maps 0 : K1(B) — Ky(I), called
the index map, and o : Ko(B) — K;(I) which makes the following six term sequence

exact.

Ko(I) — Ko(A) — Ko(B)
d ’}
Ky(B) <— K1(A) <— Ki(I)
Moreover the maps 0 and o are “natural”.

The construction of the index map 0, though tedious, is not that difficult. It is
explicitly described below. Let [u] € K;(B) be given where u is a unitary in M, (B™).
w0
0 u”
existence of such a unitary is given in Prop. [11.7] Then

o([ul) = [V (15 8) vI=-[(y 8)]

The map O defined above is well defined, i.e. it is independent of the various choices

Choose a unitary V' € My, (A1) such that #7(V) = . The justification for the

made and makes the diagram exact at K1(B) and Ky([). The construction of o is more
difficult and requires Bott periodicity.

The following is often used in applications.

Proposition 14.1 Let 0 — [ — A —+ B — 0 be a short exact sequence of C*-
algebras. Let u € M,(B™T) be a unitary. Suppose there exists a partial isometry v €
M, (A") such that 7+ (v) = u. Then O([u]) = [1, — v*v] — [1, — vv*].

1 _ *
Proof. Let V := ! v

*

0
. Then V is a unitary “lift” of ¢ . Clearly,
1 —v*vo* v 0 wu

105



Vv lln 0] V* = [UU 0 ] . Calculate as follows to observe that

0 0 0 1—-9v"
a(u]) = [ <vz))* 1 _OU*U> } B [ <1 - vv(”; + vv* 8) ]
= [vv*] + [1 — v*v] = [1 — "] — [v07]

=[1—v"v] —[1 —vv'].

This completes the proof. O
As a first application, we deduce that K; can be defined in terms of Ky and K,
can be defined in terms of K;. We say a C*-algebra B is contractible if the iden-
tity homomorphism is homotopy equivalent to the zero map. If B is contractible then
Ky(B) = Ky(B) = 0.
Let A be a C*-algebra. Denote the C*-algebra of continuous A-valued functions on
[0,1] by C([0,1], A). The norm here is the supremum norm. Set

CA:={feC([0,1],4): f(0) =0}
SA:={feCA: f(1)=0}.
The C*-algebra C'A is called the cone over A and SA is called the suspension over A.

Note that A — CA and A — SA are functors from the category of C*-algebras to
C*-algebras.

Lemma 14.2 The cone C'A is contractible. Hence Ko(CA) =0 and K;(CA) = 0.

Proof. For t € [0,1], let ¢, : CA — CA be defined by €,(f)(s) = f(st). Then (€&)ejo,q is
a homotopy of x-homomorphisms connecting the zero map with the identity map. This

completes the proof. 0.
Corollary 14.3 For any C*-algebra A, K1(A) = Ko(SA) and Ko(A) = K1(SA).

Proof. Let € : CA — A be defined by €(f) = f(1). Then we have the following exact
sequence

0— SA—CA-—5A—0.

The conclusion is immediate if we apply the six term exact sequence and the fact that

Ko(CA) = K (CA) =0. 0
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Remark 14.4 Actually, we have cheated a lot. In fact, the isomorphism Ky(A) =
K (SA) is needed apriori to define the map o in the siz term sequence. After first

proving this, o is defined as the composite of the following maps
Ko(B) = K{(SB) - Ko(SI) = K,(I).

The isomorphism Ko(A) = K1(SA) is called the Bott periodicity in K-theory. We will

discuss Cuntz’ proof of it in the next two sections.

Exercise 14.1 (1) Note that for A = C, SA := Cy(R). Conclude that Ky(Co(R)) =0

(2) Lete: C(T) — C be the evaluation map at 1. Then the short exact sequence
0 — Co(R) — C(T) = C — 0

is split exact. Conclude that Ko(C(T)) = Z and K,(C(T)) = Z. Show that [1]
forms a Z-basis for C(T).

(3) Compute the K-groups of C(S?) where S* is the unit sphere in R3.

As an application of the six term sequence, we compute the K-groups of the Toeplitz
algebra. Recall that the Toeplitz algebra 7 is the universal C*-algebra generated by
an isometry v. Let z € C(T) be the generating unitary. Then there exists a unique
surjective x-homomorphism 7 : 7 — C(T) such that 7(v) = z. Also, the kernel of 7 is
isomorphic to the C*-algebra of compact operators, denoted K, on a separable infinite
dimensional Hilbert space. Let i :  — 7T be the inclusion. We apply the six term

sequence to the following exact sequence.
0—K—T--C(T)—0
Consider the six term exact sequence

Ko(K) —— Ko(T) — Ko(C(T

d ”i
(x)

K(C(T)) <— K(T) =—— Ki(K)

We claim 0([z]) = —[p] where p is a rank one projection in K. Since 7(v) = z and
v is an isometry, it follows from Prop. that 0([z]) = [1 — v*v] — [1 — vv*] = —[p].

Note that [p] is a Z-basis for Ky(K). Also, we know that K;(C(T)) = Z. Hence [z]
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is a Z-basis for K;(C(T)). Therefore, 0 is an isomorphism. Consequently, Ky(i) = 0.
This implies that Ker(Ky(m)) = 0. Note that K;(K) = 0. This implies that o is the
zero map. Hence Im(Ky(m)) = Ko(C(T)). Consequently, Ko(7) is an isomorphism.
Therefore Ky(7) is isomorphic to Z and [1] is a Z-basis for Ky(7). Note that K;(K) =0
and Im(K;(m)) = Ker(9) = 0. Thus we have the short exact sequence

0 — K4(T) — 0.

As a consequence, K(T) = 0.
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15 Quasi-homomorphisms

We conclude these notes by discussing Cuntz’ proof of Bott periodicity. An important
technical tool that we need is the notion of quasi-homomorphisms. This also offers a
first glimpse of KK-theory. The notion of quasi-homomorphisms is due to Cuntz. We
know that homomorphisms between C*-algebras induce maps at the K-theory level. The
important observation due to Cuntz is that quasi-homorphisms, a sort of a generalised
morphism between C*-algebras, too induce maps at the K-theory level.

Let A and J be C*-algebras. By a quasi-homomorphism from A — J, we mean
the following data. There exists a C*-algebra £ which contains J as an ideal and two
x-homomorphisms ¢, ,¢_ : A — & such that for a € A, ¢, (a) — ¢_(a) € J. We simply
say that

6= (0s 6 )i A ERJ

is a quasi-homomorphism from A to J to mean the above data. Strictly speaking, there
exists an embedding ¢ : J — & such that (/) is an ideal in €. As usual, we suppress the

embedding to be economical with notation.

Example 15.1 Suppose o : A — J is a homomorphism. Then (¢,0) : A — J > J is
a quasi-homomorphism. More generally, suppose o1,09 : A — J are homomorphisms.

Then o := (01,09) : A — J > J is a quasi-homomorphism.
Let ¢ := (¢, 0_): A— € > J be a quasi-homomorphism. Set
Ay ={(a,z) e A®E : ¢ (a) =2 mod J}.

Let m: Ay — A be defined by m(a,z) = a. Then Ker(n) := {(0,z) : x € J} which we
identify with J. Let j : J — Ay be the embedding j(z) = (0,z). Define ¢ : A — Ay
and ¢_ : A — A, by

Then we have the following split exact sequence of C*-algebras with the splitting given
by either ¢, or ¢_.

Hence K;(j) is injective. Note that Kl(g/b:) - Kz(gg:) € Ker(K;(m)) = Im(K;(5)).
For ¢+ = 0,1, we define f(\l(gb) : K;(A) — K;(J) by the formula

Ri(0) = K)o (Ki(03) - Ki(o)),
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Next we derive a few basic properties about quasi-homomorphisms.

Proposition 15.2 Let 0 := (01,03) : A — J > J be a quasi-homomorphism. Then
KZ(O'> = Ki(O'l) - KZ‘(O'2>.

Proof. Note that A, = A& J. Then we can identify K;(A,) with K;(A) & K;(J).
Once this identification is made, K;(j)~" on I'm(K;(j)) is nothing but K;(pry) where
pro: A® J — J is the second projection. The conclusion is now obvious. O

In view of the above proposition, for a quasi-homomorphism ¢, we simply denote
[?Z(qb) by K;(¢). Next we discuss how to precompose a quasi-homomorphism with a
homomorphism. Let ¢ := (¢4,0_) : A — € > J be a quasi-homomorphism. Suppose
€ : B — A is a homomorphism. Then ¢ = (¢,,¢_) : B — & > J is a quasi-

homomorphism where ¥, = ¢, oeand p_ =¢_oe.
Proposition 15.3 With the foregoing notation, we have K;(v)) = K;(¢) o K;(¢).
Proof. Let jp:J — By and ja: J — A, be the embeddings. Define n : B, — A, by

n(b, x) := (e(b), ).

Note that nojg = ja, nog/b: = g/b:oe and 770@;: = &i oe. Let y € K;(B) given. Choose
z € K;(J) such that K;(jg)z = (K;(¢,) — K;(¥_))y. Then K;(¢)y = z.

To show that K;(¢) o K;(e)y = z, it suffices to show that K;(ja)z = (Ki(d,) —
Ki(6_))K;(€)y. Calculate as follows to observe that

Ki(ja)(z) = Ki(n) Ki(jp)x
= Ki(n)Ki({L)y - Kz‘(ﬁ)-&‘(&—)?/
= Ki(<$+ o€)y — Ki(gf o€y
= (Ki(¢1) — Ki(6-)) Ki(e)y.

This completes the proof. O

Post composing a quasi-homomorphism with a homomorphism is a bit tricky. The
data we need is the following. Suppose ¢ = (¢4, 0 ) : A — £ > J is a quasi-
homomorphism. Let € : J — J be a sx-homomorphism. To define € o ¢, we need
an extension of €. Suppose there exists a C*-algebra £ containing J as an ideal such
that € extends to a map from & — £ . Denote an extension again by €. Set ¢, := € o¢.
and ¢_ :=¢ op_. Then v := (Y, 9_): A — £ > J is a quasi-homomorphism.

Proposition 15.4 With the foregoing notation, we have K;(¢) = K;(€') o K;(¢).
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Proof. Let j: J — Agand j : J — A¢ be the embeddmgs Let n: Ay — Aw be defined
by n(a,z) := (a,€ (z)). Then no ¢y =1, and no¢_ =1_. Alsonoj=7 oc.

Let y € Ki(A) be given. Choose z € K;(J) such that K;(¢4)y — Ki(¢_)y = K;(j)x.
To prove K;(v)y = K;(€ )K;(¢)y, it suffices to show that K;(j)K;(e)r = Ki({ZJ:)y -
K;(¢_)y. Calculate as follows to observe that

’

Ki(j)Ki(e o = Ki(m)Ki(j)x N
= K;(n) (K (o4)y — Ki(n) Ki(o-)y
= Ki(1 )y — Ki(¥_)y.

This completes the proof. O
For ¢t € [0,1], let ¢' := (¢!, ¢" ) : A — £ > J be a family of quasi-homomorphisms.
We say that (¢')c0,1] is a homotopy if (¢ )icp1) and (¢ )icpo,1) are homotopy of *-

homomorphisms.

Proposition 15.5 Let ¢' := (¢!, ¢") : A — £ B> J be a homotopy of *-homomorphisms.
Then K;(¢") is independent of t.

Proof. Let € := C([0,1],€) and J := C([0,1], J). Define ¢, : A — E by the formula

o1 (a)(t) := ¢, (a).

Similarly define gfzﬁt Then 5 = (g/b:, g/zﬁt) A E>Jisa quasi homomorphism. For
€ [0,1], let ¢ : € — & be the evaluation at t. By Prop. [15.4] K;(¢") = Ki(e) o Ki().
However, K;(e;) is constant by the homotopy invariance of K —theory. Hence the proof.
O
Next we discuss the additive property of K-theory. Let ¢, : A — B be ho-
momorphisms. We say ¢ and v are othogonal and write ¢ L o if for x,y € A,
o(z)Y(y) = 0. Note that if ¢ L @ then ¢ + ¢ : A — B is a x-homomorphism.
Let ¢ := (¢p1,0-) : A - E > Jand ¢ := (Yy,¢0_) : A — £ > J be two quasi-
homomorphisms. We say that ¢ and 1 are orthogonal if ¢, L ¢, and ¢_ L ¢_. If
¢ and 9 are orthogonal, then clearly ¢ + ¢ := (¢4 + ¢y, ¢0_o0t_) : A = ED> Jisa

quasi-homomorphism.

Proposition 15.6 Suppose ¢ := (¢4, ¢p_): A= E>Jandp := (Y, ): A= E>J
are orthogonal quasi-homomorphisms. Then K;(¢ + 1) = K;(¢) + K; ().

Lemma 15.7 Let A be a C*-algebra. Let iy, i — A — A® A be defined by i1(a) = (a,0)
and ig(&) = (0, a). Then Kl(ll + 22) = Kl(ll) + Kl(lz)
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Proof. Let m,m : A® A — A be the first and the second projections respectively. We
know that K;(m) @ K;(ms) : K;(A® A) — K;(A) ® K;(A) is an isomorphism. To verify
the equality K;(i1+i2) = K;(i1) + K;(i2), it suffices to verify the following two equalities.

Ki<7T1) O Kz(ll + ZQ) = Ki(ﬂ-l) o KZ('Ll) —f- Kz‘(ﬂ'l) O KZ(’LQ)

Ki(ﬂ'g) e} Kz<21 + Zg) = K7;<7T2) s} Kz(h) + Ki(ﬂ-Q) o} KZ(’LQ)
This verification is obvious. O.
Proof of Prop. [15.6 Let X, : A@A — € > J be defined by X, (a,b) = ¢ (a)+1,(b).
Similarly define ¥X_. Then ¥ := (3,,3_) : A — £ > J is a quasi-homomorphism. Let

A:A— A® Abe defined by A(a) = (a,a). Then A = i; +1iy. Note that ¢+ := Lo A.
Clearly ¢ = X o4y and ) = ¥ o iy. Calculate as follows to observe that

This completes the proof. O
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16 Bott periodicity

In this section, we discuss Cuntz’ proof of Bott periodicity. The main result in Cuntz’
proof is to first compute the K-theory of the Toeplitz algebra. We had already computed
the K-groups of the Toeplitz algebra assuming Bott periodicity. Here we compute it
without this assumption. Recall that the Toeplitz algebra 7T is the universal C*-algebra
generated by a single isometry v.

We need to use tensor products of C*-algebras, a delicate topic, in what follows.
The reader should consult [4] for a detailed treatment. We ask the reader to accept
the statements made here in good faith. Let A; and Ay be C*-algebras. Consider
the algebraic tensor product A; ®qy As. Then Ay ®qy Az is a *-algebra where the

multiplication and *-structure are given by

(a1 & ag)(bl X bg) = a161 X CLQbQ
(a®b)"=a" ®@Db".

Let || || be a C*-norm on A; ®g44 As. The norm || || is said to be a cross-norm on
Ay ®qig Ao if [la ® b]| = [|al]||b]|- It is true that there exists C*-algebras A; and A, such

that Ay ®g4 A2 admits more than one C* cross norm.

Definition 16.1 A C*-algebra A is called nuclear if the following holds. For every C*-
algebra B, there is only one C* cross norm on the algebraic tensor product A ®qq4 B. If
A is nuclear then A® B denotes the completion of A®g4 B with respect to any C* cross

norm
Exercise 16.1 Show that M, (C) is nuclear.

Spatial tensor product: It is always possible to define a C*-cross norm as follows.
Let A; and Ay be two C*-algebras. Let m : Ay — B(H;) and 7y : Ay — B(H,) be
faithful representations. Define m ® my @ Ay ®quy A2 = B(H1 ® Hsa) by the equation

(m ® m2)(a1 ® ag) = m1(ar) ® ma(az).

Then m ® 7y is a *-homomorphism and is injective. For x € A; @y, Ao, let ||z|| :=
||m1 ® mo(z)||. Then || || is a norm on Ay ®qy A2. It is a non-trivial fact that || || is
independent of the chosen faithful representations 7 and mp. This norm on A; ®g4 Az
is called the spatial norm and the completion of A; ®g, Ay is called the spatial tensor
product. The reader can assume that the tensor product of C*-algebras that we consider

is always the spatial one without much loss.
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Exercise 16.2 Let D be a C*-algebra. Show that the map A — A® D is a functor from
the category of C*-algebras to the category of C*-algebras. Here the tensor product is the

spatial one.
We need the following facts regarding nuclear C*-algebras and tensor products.

1. Commutative C*-algebras are nuclear.
2. Inductive limits of nuclear C*-algebras are nuclear.

3. Let 0 = I - A — B — 0 be a short exact sequence. If I and B are nuclear then

A is nuclear.

4. Let 0 - I — A — B — 0 be a short exact sequence of nuclear C*-algebras. If D

is a C*-algebra then the sequence
0=-D®I—=-D®A—=-D®B—0
is exact.
Exercise 16.3 Use the above facts to conclude that the Toeplitz algebra is nuclear.

Exercise 16.4 Let X be locally compact Hausdorff topological space and A be a C*-
algebra. Assume that Co(X) is nuclear. Use this assumption to show that Cy(X) ® A =
Co(X, A).

Hint: The map Cy(X) ®uy A D f®a — fa € Cp(X,A) is an embedding. Here f.a
stands for the map which sends z to f(x)a.

Let us return to the discussion on Bott periodicity. Let ¢ : T — C be defined by
g(v) =1and j: C — T be defined by j(1) = 1. The map ¢ exists by Coburn’s theorem.
We claim that K;(q) : K;(T) — K;(C) is an isomorphism with inverse given by K;(j).
Since q o j = id, it follows that K;(q) o K;(j) = id.

Let p=1—vv* Let w:T — K®T be defined by w(z) = p® z. Since K;(w) is an
isomorphism, to show that K;(j)o K;(q) = Id, it suffices to show that K;(w)o K;(joq) =
K;(w). Let 0 :=wo jogqand 0y =w. Then

o1(v) =p®1
o1(v) =p®w.

We need to show that K;(o1) = K;(02).
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Exercise 16.5 Prove the following version of Coburn’s theorem. Let A be a C*-algebra.
Suppose w is a partial isometry in A such that ww* < w*w. Then there exists a unique

x-homomorphism o : T — A such that o(v) = w.

Hint: Set p := w*w and consider pAp.
Keep the notation preceeding the above exercise.

Theorem 16.2 We have K;(01) = K;(02). Therefore, the map K;(q) : Ki(T) — K;(C)

s an isomorphism.

Proof. By Coburn’s theorem, there exists a *-homomorphism ¢ : 7 — 7 ® 7T such that
€(v) =v(1 — p) ® 1. Note that

0:=(01,00): T >TRT>KRT

and

€=(6e): T=>TRTEKLST

are quasi-homomorphisms. Moreover o L €. By the properties of quasi-homomorphisms
discussed in the previous section, it follows that K;(o +¢€) = K;(0) + K;(€) = K;(01) —
K;(02). We will be done if we show that K;(c +€) = 0.

Let

- cos(gt)(p ©1)+ sin(gt)(vp ®1)+v(l—p) @1
wy = cos(zt)(p ®v) + sin(gt

5 Yop@1)+v(l—p)®1

Note that v; and w; are isometries in 7 ® T. For every t € [0, 1], by Coburn’s theorem,
there exists *-homomorphisms 05:) T =TT and o : T — T ® T such that

Clearly o) := (agf), O'(_t)) T =TT > K®T is a homotopy of quasi-homorphisms.
Note that 0(® := ¢ + €. By the homotopy invariance, we have

Ki(oc+¢€) = K,;(O'_(:), o).

But O'_(:) = ¢"). Hence K;(o +¢€) = 0. Consequently, we have K;(o1) = K;(02). This
completes the proof. 0.
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Corollary 16.3 Let Ty := Ker(q). Then K;(Ty) = 0.
Proof. Note that the short exact exact sequence
0—Tg—T C—0

is split exact with the splitting given by j. Since K;(q) is an isomorphism, the conclusion
follows. O

The next step in the proof of Bott periodicity is to establish that K;(7To ® B) = 0
for every C*-algebra B. Actually, we do not have to do anything. If we go through the
proofs once again, we realise that all we need to know about the functor K; is that it
is stable, homotopy invariant and sends split exact sequences to split exact sequences.
The proof is applicable for any functor from the category of (nuclear) C*-algebras to the
category of abelian groups which is split exact, homotopy invariant and is stable.

Fix a C*-algebra B. Let F' be the functor from the category of nuclear C*-algebras
to the category of abelian groups defined by F(A) = K;(A ® B). Then F is split exact,
stable and homotopy invariant. Therefore F'(7y) = 0, i.e. K;(To ® B) = 0. With this in

hand, we can complete the proof of Bott periodicity.
Theorem 16.4 (Bott periodicity) For any C*-algebra B, we have
Ko(B) =2 K1(SB) = K1(Co(R) ® B).

Proof. Let o : T — C(T) be the map that sends v to z. Denote by ev;, the evaluation
map from C(T) — C at 1. Note that ¢ = ev; oo. We can identify Cy(R) with Ker(evy).

Consequently, we have the following short exact sequence
0—K— Ty — Co(R) — 0.
Tensor the above short exact sequence to obtain the following.
0 —K®B—To®B— Cy(R)®@ B— 0.
Since Ko(7o ® B) = K1(To ® B) = 0, it follows that the index map
0 : K1(Co(R) ® B) = Ko(K ® B) = Ko(B)

is an isomorphism. This completes the proof. O
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Remark 16.5 In fact, the statement of Bott periodicity is a bit more. Bott periodicity
gives an explicit map from Ko(B) — K1(SB). We explain this for unital C*-algebras.
Let B be a unital C*-algebra. Then

Mu((SB)T) = {f:T — Mu(B): f(1);; € Clp}.
For a projection p € M,(B), let f, : T — M,(B) be defined by
fp(z) =2p+ 1, —p.

Then f, is a unitary in M,((SB)").
Bott periodicity asserts that there exists a unique map B : Ko(B) — K1(SB), called

the Bott map, which is an isomorphism such that

Alp)) = )

If we carefully work through the proofs and unwrap all the identifications, we can prove

that the Bott map is indeed an isomorphism. The reader should carry out this verification.

Remark 16.6 Much of the material on K-theory is based on the lectures given by Cuntz
during a conference held at Oberwolfach in 2014.
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